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Introduction

Beata Ciałowicz1

Quantitative methods in economics include mathematical modelling, game theory, 
optimization techniques, statistical methods and econometrics. The methodological 
status of these methods in analyzing the issues of economics has been discussed 
for years. At the most fundamental level quantitative methods are universally 
and primarily aimed at answering contemporary economic questions at testing 
economic theories, ideas or hypotheses. These methods help to extend and forma-
lize a broad range of empirical and theoretical problems in economics and influ-
ence the development and refinement of formal models in economics. Moreover, 
quantitative methods increase research efficiency by making it possible to confront 
theories with empirical data, to apply a formal theory to many different subject 
matters and to indicate similarities and differences in a comparative analysis of the 
theories on the same problem.

This monograph presents some interesting applications of quantitative methods in 
studying the phenomena of economic processes using mathematical knowledge 
and tools. The area of scientific research is diversified and covers topics relating 
to macroeconomics, consumer theory, socio-economic development, households 
quality of life, heteroskedastic Vector Autoregressive models and credit risk models.

In the first chapter by Jakub Bielawski, Merger of populations and aggregate relative 
deprivation, the problem of merging populations and its consequences is analyzed. 
In particular, this chapter shows that in some situations it is sufficient to change 
the weight the individuals attach to the comparison with the richest individuals 
in the population to obtain that the social stress decreases after the merger.

The following chapter by Anna Denkowska entitled Convergence of conflict sets 
and applications presents some new results concerning the semicontinuity of the 

1 Beata Ciałowicz, Cracow University of Economics, e-mail: beata.cialowicz@uek.krakow.pl
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conflict set and discusses them for applications. Specifically, it discusses the conflict 
sets of a finite family of pairwise disjoint closed subsets of the Euclidean space 
evolving in time.

The chapter by Michał Górnik, Analysis of football players labor market migrations 
using panel gravity models, gives an example of using panel gravity models for 
estimating the size of players movement between pairs of countries and verifies 
hypotheses of the impact of the sport level difference between leagues on the 
number of transfers as well as the correlation between the overall country economy 
and its top-tier league capability to attract football players.

Albert Gardoń, in his contribution The Angle between the 2-dimensional Linear 
Regression Model Lines, analyzes an impact of the goodness-of-fit and the ratio of 
sample variances on the angle between the linear regression lines. This chapter 
shows that the angle depends not only on the correlation between features but 
also on the ratio of their sample dispersions. 

The next chapter by Stanisław Heilpern, Selected credit risk models, is devoted to 
credit risk in two kinds of models based on the generalized binomial distributions. 
Firstly, the dependent credit risk, using copulas, mainly Archimedean is investigated. 
Secondly, a case with the uncertain probability of the insolvent obligors is studied. 

Marta Kornafel in her contribution Optimal path in growth model, considers the 
general Ramsey-Koopmans-Cass growth model where some of the parameters 
depend on time. This work is focused on the dependence of the model and its 
solution to the perturbance of parameters. 

The following chapter by Łukasz Kwiatkowski, Predictive power comparison of 
Bayesian homoscedastic vs Markov-switching heteroskedastic VEC models, develops 
a framework for modelling the forecasting performance of Bayesian vector error 
correction models featuring two- and three-state Markovian breaks in the condi-
tional covariance matrix to capture time-varying volatility, typically recognized 
in macroeconomic data. 

Anna Pajor, in her contribution MCMC method for the IG-MSF-SBEKK model proposes 
specific numerical method applied to estimate the hybrid IG-MSF-SBEKK model for 
daily exchange rate returns. In this method a Markov chain Monte Carlo simulation 
tool is adapted to obtain a sample from the posterior distribution of parameters and 
latent variables. 

The last chapter by Agnieszka Wałęga, Indebted households’ self-assessment of their 
financial situation: evidence from Poland, stresses the importance of the level of debt 
and over-indebtedness risk for self-assessment financial situation of the household. 
To examine the relationship between the respondents’ self-assessment of their 
financial situation and commonly used objective measures of over-indebtedness, 
the ordered probit model was used.

All these research findings were planned to be presented in April 2020, postponed 
due to the pandemic of COVID-19, at the 56th Conference of Statisticians, Econome-
tricians and Mathematicians of South Poland (SEMPP 2020 conference). The SEMPP 
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conference is one of the oldest scientific conferences in the field of economic scien-
ces in Poland. It was first held in Katowice in 1965, on the initiative of Professor 
Zdzisław Hellwig, Professor Zbigniew Pawłowski and Professor Kazimierz Zając. It 
takes place continuously every year and its organizers are alternately economic 
universities in Katowice, Krakow and Wroclaw. The main aim of this conference is to 
present the scientific achievements of the employees of economic universities of 
South Poland in the field of statistics, econometrics and mathematics and their 
applications in various fields of science including economics, finance and mana-
gement. Moreover, it gives the opportunity to start and strengthen cooperation 
between the research centers from Katowice, Krakow and Wroclaw.

﻿



Merger of Populations and Aggregate Relative 
Deprivation

Jakub Bielawski1

Abstract   

The problem of merging populations and its consequences was widely studied by 
economists. Stark [Stark, 2013] showed that a merger of populations will always 
impose an increase in the discomfort of individuals resulting from comparing 
their incomes with incomes of other members of the group. More precisely, the 
aggregate relative deprivation of the merged population mustn’t be less than the 
sum of aggregate relative deprivation of populations prior to the merger. In other 
words, the aggregate relative deprivation is superadditive.

Our major question is whether the superadditivity result is independent of the 
choice of the relative deprivation measure. We show that in some situations it is 
sufficient to change the weight the individuals attach to the comparison with the 
richest individuals in the population to obtain that the social stress decreases after 
the merger.

Keywords: merger of populations, aggregate relative deprivation, income distri-
bution, social distress

JEL classification: D31, D63, I31

1 Jakub Bielawski, Cracow University of Economics, e-mail: bielawsj@uek.krakow.pl 
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1. Introduction
In this paper we study the problem of a merger of two populations, namely we ask 
how this operation affects the social stress of both groups. We measure social stress 
by aggregating the levels of relative deprivation experienced by members of these 
populations.

The relative deprivation of a member of a population can be measured in a variety 
of ways. One of the most common and natural is the Yitzhaki index defined as the 
aggregate of the excesses of the incomes of the other individuals in the population 
divided by the number of individuals in the population (essentially an operationa-
lization of Runciman’s 1966 relative deprivation concept by Yitzhaki, 1979, Hey, 
Lambert, 1980, Chakravarty, 1999, Ebert, Moyes, 2000, Bossert, D’Ambrosio, 2006, 
Stark, Hyll, 2011). Another method of measuring relative deprivation is the maxi-
mal index, where the only comparison with the richest individual matters.

In 2013 Stark showed that merger of populations will always yield an increase in 
the discomfort of individuals resulting from comparing their incomes with incomes 
of other members of the group [Stark, 2013]. More precisely, the aggregate relative 
deprivation of the merged population has to be at least as the sum of aggregate 
relative deprivation of populations prior to the merger. In other words, the measure 
of aggregate relative deprivation is superadditive. This fact gives another insight 
into the tension which individuals experience when their group is combined 
with another.

The superadditivity result was proved by Stark [2013] for measures of aggregate 
relative deprivation constructed on the basis of the Yitzhaki index of relative depri-
vation and for the maximal relative deprivation index. Note that in the Yitzhaki 
measure an individual compares his income with incomes of all members of his 
population. In this paper we follow a strand of literature [Ebert, Moyes, 2000, 
Bossert, D’Ambrosio, 2014, Stark et al. 2017] that excludes comparison of an indi-
vidual’s income with his own income. Therefore in this approach, we assume that 
the reference group of an individual (the group of individuals the individual com-
pares his income with) does not contain the entire population. Moreover, we assume 
that the impact on the relative deprivation of each of the excesses of the incomes 
is not identical. In Stark et al. [2017] we introduced a class of measures of relative 
deprivation of order p>0, which, among other advantages, unifies the Yitzhaki 
measure and the maximal measure. The parameter p can be seen as the weight the 
individuals attached to the comparison of their income with the incomes of other 
individuals in the reference group.

In this article we study the properties of the measure of aggregate relative depri-
vation of order p>0 (ARDp). Most notably, we show that the aggregate relative 
deprivation of order p≥1 satisfies the Pigou-Dalton Transfer Principle2. Then we 

2 An index satisfies Pigou-Dalton Transfer Principle if any transfer of income from poorer 
individual to richer individual imposes increase of the value of the index.
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characterize the measure which, among others, regards the superadditivity pro-
perty of the measure ARDp. In particular, when individuals put high enough we-
ights on comparisons with the richest individuals in their reference group, if for 
two populations the highest incomes are different, then the merger of these popu-
lations results in increased aggregate relative deprivation beyond the sum of levels 
of this index for populations prior to the merger.

The paper is organized as follows: In Section 2 we introduce measures of aggrega-
te relative deprivation for the cases of the Yitzhaki measure of relative deprivation, 
the measure of maximal relative deprivation and the relative deprivation of order  
p>0. Later on, we study the properties of the measure of aggregate relative depri-
vation of order p>0. In Section 3 we show the results on superadditivity property 
of the measure ARDp when two populations are merging. Section 4 concludes. The 
proofs of the results can be found in the Appendix.

2. Aggregate relative deprivation
Let Γ be a population of n≥2 individuals indexed by i=1,2,…,n. Let X=(x1,x2,…,xn) 
denote the vector of incomes of Γ, where xi≥0 is an income of individual indexed 
by i. We summarize the population and incomes by (Γ, X).

The Yitzhaki measure of relative deprivation of individual indexed by i in popula-
tion (Γ, X) is defined as 

	
RD(i, X )≡ 

1
−
n ∑max{xj − xi,0}

n

j=1
.                                  (1)

The maximal relative deprivation index arises when the individual compares his 
income only with the richest (wealthiest) individual in his reference group, that is

	
RDmax(i, X )≡ max  xj − xij=1,…,n

.                                      (2)

Summing up the levels of relative deprivation of every individual in the popula-
tion Γ we obtain the index of aggregate relative deprivation for the Yitzhaki measure 
and for the maximal measure respectively:

	        ARD(X )≡∑RD(i, X)
n

i=1
       and      ARDmax(X )≡∑RDmax(i, X)

n

i=1
.	

The relative deprivation of order p>0 of individual indexed by i is defined by

	
RDp(i, X )≡⎧

⎪
⎩

   1 
   ∑(max{xj − xi,0})p⎫

⎪
⎭
    =⎧

⎪
⎩

   1 
   ∑(xj − xi)p⎫

⎪
⎭

   n−1
j≠i

1
p

n−1

1
p

xj>xi
.

This measure unifies two measures of relative deprivation – the measure arising 
from the comparison of an individual’s income with incomes of all other indivi-
duals in his population (a measure that is proportional to (1)) and the measure 
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resulting from the comparison of his income with the income of the richest indivi-
dual (2). Properties of the class {RDp}p>0 are discussed in Stark et al. [2017].

We define the aggregate relative deprivation of order p>0 of population (Γ, X) as the 
sum of the levels of relative deprivation of order p of all individuals in Γ

ARDp(X )≡∑RDp(i, X)=∑⎧
⎪
⎩

   1 
   ∑(max{xj − xi,0})p⎫

⎪
⎭

  
n

i=1
n−1

1
pn

i=1 j≠i

.

There is extensive literature on the subject of axiomatic properties of the aggregate 
relative deprivation measures [Chakravarty, Chakraborty, 1984, Ebert, 1988, Wang, 
Tsui, 2000]. It is commonly assumed that such measures should fulfill the properties 
of normalization, symmetry, and Pigou-Dalton Transfer principle. In the following 
propositions we show, among others, that the measure ARDp has first two of these 
properties. We show that ARDp satisfies Pigou-Dalton Transfer Principle in a separate 
theorem.

Firstly, we show that the measure ARDp is symmetric, that is the measure ARDp 
is independent of the order of individuals.

Proposition 1. If the set (Γ, X̄ ) is obtained from (Γ, X) by permutation of the incomes 
of members of Γ, then ARDp( X̄ )= ARDp(X ).

By Proposition 1 we can assume that the incomes of members of Γ are ordered. 
Thus from now on we assume that x1≤x2≤…≤xn.

Proposition 2. (Properties of ARDp)

1.	 (Monotonicity) If p<q then ARDp(X ) ≤ ARDq(X ) and ARDp(X ) = ARDq(X ) if 
and only if x1=x2=…=xn.

2.	  lim ARDp(X )=⎧
⎪
⎩
Π(xj − x1)⎫

⎪
⎭

  
p→0+

1
n−1n

j=2

 and lim ARDp(X )≡∑(xn−xi)=ARDmax(X )
n−1

i=1
p→∞

.

3.	 (Normalization) If x1=…=xn then ARDp(X ) = 0  for every p>0.

The first property informs us that the measure ARDp  is increasing with respect to 
parameter p. Property 2) regards the limit cases, that is, if p converges to zero then 
the ARDp converges to the geometric mean of the set of excesses of the incomes 
over the income of the poorest member of the population, and if p converges to 
infinity then ARDp converges to ARDmax. By property 3) we have that the measure 
ARDp  attains its minimal value (zero) when all members of the population Γ have 
equal incomes.

Before proceeding to the main result of this Section we introduce the Pigou-Dalton 
Transfer Principle.

Definition 1. (Pigou-Dalton Transfer Principle)

Let X be the vector of incomes of members of a population Γ of size n sorted in incre-
asing order, that is X=(x1, x 2,…, x n) and 0≤x1≤x2≤…≤xn. Let X̄=( x̄ 1, x̄ 2,…, x̄n)  

Merger of Populations and Aggregate Relative Deprivation
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be the vector of incomes of the population Γ obtained from X by one transfer of so-
me amount of income from a poorer individual to a richer such that this transfer 
does not affect the order. That is, there exist indexes k,l, k<l, and an amount of 
income �>0 such that x̄ k,=xk−�≥xk−1, x̄ l,=xl+�≤xl+1 and x̄i,=xi for i=1,…,n, 
i≠k and i≠l. We say that an index I satisfies Pigou-Dalton Transfer Principle 
if I(X̄ )>I(X).

Below we discuss whether ARDp satisfies the Pigou-Dalton Transfer Principle. 

Theorem 1. If the set (Γ, X̄ ) is obtained from (Γ, X) by a transfer of income from 
a poorer individual to a richer individual, then ARDp(X̄ )> ARDp(X) for every p≥1.

The result of Theorem 1 is a generalization of the Pigou-Dalton Transfer Principle 
for the case p=1. This result is not a surprise because for p>1 changes in incomes 
of richer individuals are more important for the members of Γ than for p=1. Note 
that for p∊(0,1) we have the opposite effect, therefore, we should not expect the 
Pigou-Dalton Transfer Principle to take place in this case. In the next two examples 
we show that if p∊(0,1) then ARDp may not satisfy the Pigou-Dalton Transfer Prin-
ciple. In fact, when p∊(0,1) neither the inequality from Pigou-Dalton Transfer 
Principle nor the opposite inequality will hold. 

Example 1. Let X=(1,5,145) be the vector of incomes of population Γ of three 
individuals. Suppose there was a transfer of x∊(0,4) amount of income from indi-
vidual indexed by 2 to individual indexed by 3. Let X̄=(1,5−x,145+x) be the vec-
tor of incomes of population Γ after the transfer. Then for every x∊(0,4) we have that 

ARD (X )=⎧
⎪
⎩

 1 ⎫
⎪
⎭
    ⎧⎪

⎩
�(145−1) +(5−1)  � +�(145−5)  � ⎫⎪

⎭
 
 
= 336

2

21
2

1
2

1
2

2 2

4

1
2

and

ARD ( X̄ )=⎧
⎪
⎩

 1 ⎫
⎪
⎭
    ⎧⎪

⎩
�(145+x−1) +(5−x−1)  � +�(145+x−(5−x))  � ⎫⎪

⎭
 

 

2

21
2

1
2

1
2

2 21
2

.
 

We define

f(x)≡ ARD ( X̄ )−ARD (X )= 1  ��(144+x) +(4−x)  � +2x−196�.
41

2

1
2

2

1
2

1
2

In order to prove that ARD ( X̄ )<ARD (X )1
2

1
2

 it is sufficient to show that f(x)<0 for 

every x∊(0,4). Firstly, note that f(0)=0. Secondly, we compute the derivative of the 
function f(∙)

f '(x)= 1  ⎧⎪
⎩

      4−x   −    144+x  +2⎫
⎪
⎭
 
 
.

4 √144+x √4−x
√ √

One can verify that f '(x)<0 for every x∊(0,4). This shows that the Pigou-Dalton 

Transfer Principle is not satisfied for p=1−
2 .
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Example 2. Let X=(1,2) be the vector of incomes of population Γ of two individuals. 
Suppose there was a transfer of x∊(0,1) amount of income from individual indexed 
by 1 to individual indexed by 2. Let X̄=(1−x, 2+x) be the vector of incomes of popu-
lation Γ after the transfer. We define

f(x)≡ ARDp( X̄ )−ARDp(X )=�(2+x−(1−x))p�   −�(2−1)p�  =2x
1/p 1/p

 

Observe that f(x)>0 for every x∊(0,1). Therefore, the inequality opposite to the one 
shown in Theorem 1 does not hold for p∊(0,1).

By the last three results we have that the Pigou-Dalton Transfer Principle is satis-
fied by the measure ARDp if and only if p≥1. Note that a measure of aggregate 
relative deprivation can be regarded as a measure of income inequality in a popu-
lation. Because the Pigou-Dalton Transfer Principle is an important property of any 
such measure, we have that the measure ARDp  for p≥1 has the right properties.

3. Merger of populations
In this section we ask whether the merger of two populations will result in increased 
aggregate relative deprivation beyond the sum of levels of this index for populations 
prior to the merger. The first results on this subject were obtained in 2013 by O. Stark.

Consider populations Γ1, Γ2. Let X denote the vector of incomes of members of popu-
lation Γ1, and let Y be the vector of incomes of members of population Γ2. We de-
note the merged population by Γ1∪ Γ2 and the resulting vector of incomes by X∘Y.

Theorem 2. [Stark, 2013] 

			    ARD(X∘Y)≥ARD(X)+ARD(Y) 	 (3)
and

		          ARDmax(X∘Y)≥ARDmax(X)+ARDmax(Y). 	 (4)

The property of an index that the value of the sum of arguments is at least the sum 
of values of the index of the arguments is called superadditivity. Therefore, upon 
(3) and (4) we call the measures ARD and ARDmax superadditive.

We show that when the aggregate relative deprivation of the population is measu-
red by using the index ARDp, then the superadditivity property does not always 
hold. Firstly, we show that if in the two populations the highest incomes differ, 
then the measure ARDp has the superadditivity property provided that p is suffi-
ciently large.

Theorem 3.  Let X=(x1,…, x n) be the vector of incomes of population Γ1 of n indi-
viduals, and let Y=( y1,…, ym) be the vector of incomes of population Γ2 of m indi-

viduals. Suppose that max xi≠max  yj
i=1,…,n j=1,…,m

. If p is sufficiently large, then

ARDp(X∘Y)>ARDp(X)+ARDp(Y). 

Merger of Populations and Aggregate Relative Deprivation
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The result of Theorem 3 can be explained on the basis of the properties of the 
measure RD. Namely, for p>1 an individual puts high weights on comparisons 
with the richest individuals in his reference group. If even richer individuals appear 
after merging, then his relative deprivation will be affected significantly.

Secondly, we show that a merger of two identical populations results in a decrease 
of aggregate relative deprivation below the sum of levels of this index for the po-
pulations prior to the merger.

Theorem 4. Let populations (Γ1,X), (Γ2,Y) be such that X=Y . Then for every p>0 
we have that

ARDp(X∘Y)≤ARDp(X)+ARDp(Y).

Moreover, ARDp(X∘X)=2∙ARDp(X) if and only if x1=x2=…=xn.

Finally, because the measures ARD and ARD1 are proportional we can deduce the 
following result about the measure ARD.

Remark 1. By Theorem 2 we have that ARD(X∘Y)≥ARD(X)+ARD(Y), while by 
Theorem 4 we obtain that ARD1(X∘Y)≤ARD1(X)+ARD1(Y) whenever X=Y. More-
over, because n∙ARD(X)=(n−1)∙ARD1(X) we have that ARD is proportional to ARD1. 
By these facts we deduce that if X=Y, then

ARD(X∘Y)=ARD(X)+ARD(Y). 

4. Conclusions
In this paper we studied how the merger of two populations affects the aggregate 
relative deprivation of order p>0 of these groups. The results we obtained differ 
from the results of Stark [2013]. In Stark [2013] the measure ARD is always super-
additive, in other words, the merger of populations will always increase social stress 
experienced by the members of these populations. By using the measure of aggre-
gate relative deprivation of order p>0, we showed that the superadditivity property 
does not have to occur. In particular, for two identical populations the measure 
ARDp is subadditive, and not superadditive. These differences can be explained by 
the choice of the reference group for individuals. Stark [2013] uses the aggregated 
Yitzhaki measure of relative deprivation, and in this index the reference group of 
an individual consists of the entire population. We exclude an individual from his 
reference group, thus the individual does not compare his income with his own 
income. This approach is in line with the modern studies in income inequalities 
[Bowles, Carlin, 2020] and with the axiomatic basis of the relative deprivation 
measures [Ebert, Moyes, 2000, Bossert, d’Ambrosio, 2014, Stark et al., 2017].

Acknowledgments

We acknowledge support from a subsidy granted to Cracow University of Econo-
mics. We acknowledge the invaluable help of dr Fryderyk Falniowski.

16

Jakub Bielawski



Appendix

Before presenting the proofs of the main results we show a lemma that will be 
useful in proving these results.

Lemma 1. Let I be an interval and let f:I→R be convex. If x1,x2∊I, x1<x2 and �<x1, 
then        

 f(x1)−f(x1−�)≤f(x2+�)−f(x2).

Proof

It is well-known that a function f(∙) is convex if and only if the function 

R(x, y) ≡
 f(y)−f(x)

y−x  is increasing in x, for y fixed (or vice versa). Observe that  

x1−�<x1<x2<x2+�. By using the monotonicity of functions R(x,∙), R(∙,y) we 
have that

 f(x1)−f(x1−�)
≤ 

f(x2)−f(x1−�)
≤ 

f(x2)−f(x1)≤ 
f(x2+�)−f(x1)≤ 

f(x2+�)−f(x2)
�                    x2−x1+�            x2−x1           x2−x1+�                 � .

By multiplying the leftmost and the rightmost sides of this sequence of inequalities 
by � we obtain the thesis. 

Proof of Proposition 1

The proof is a direct consequence of the definition of the aggregate relative depri-
vation of order p>0. 

Proof of Proposition 2

Properties 1) – 3) follow immediately from the properties of the measure RDp. 

Proof of Theorem 1

The proof of case p=1 is straightforward. Thus, we assume that p>1. Let Γ be 
a population of n individuals with incomes represented by the vector 
X=(x1,…,xk,…,xl,…,xn), where xi≤xi+1 for i=1,2,…,n−1, k<l and xk<xl. Let 
X̄=(x1,…,xk−�,…,xl+�,…,xn) denote the vector of incomes of population Γ after 
a transfer of �<min{xk−xk−1,xl+1−xl} amount of income from individual indexed 
by k to individual indexed by l. The aggregate relative deprivation of order p>1 of 
the populations (Γ, X) and (Γ, X̄ ) have the following forms: 

ARDp(X )≡∑RDp(i, X)
n

i=1
    and     ARDp( X̄ )≡∑RDp(i, X̄ )

n

i=1

.
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We analyze the results of the transfer of income on the levels of relative depriva-
tion of order p>1 for members of Γ. By the properties of the measure RDp [see 
Stark et al., 2017] we have for p>1 that:

RDp (i, X̄ )=RDp(i, X) for i∊{l+1,…, n},

RDp (l, X̄ )<RDp(l, X),

RDp (i, X̄ )>RDp(i, X) for i∊{1,…,l −1}.

To complete the proof it is sufficient to show that

RDp (k, X̄ )+RDp(l, X̄ )+∑RDp (i, X̄ )>RDp(k, X)+RDp(l, X)+∑RDp (i, X)
l−1

i≠k
i=1

l−1

i≠k
i=1

.  (5)

Because ∑RDp (i, X̄ )>∑RDp (i, X)
l−1

i≠k
i=1

l−1

i≠k
i=1

, in order to prove (5) it is sufficient to show 
that

RDp (k, X̄ )+RDp(l, X̄ )≥RDp(k, X)+RDp(l, X).

We define f (x) ≡ ⎧⎪
⎩

   1    ∑ (max{xj−x,0})p⎫
⎪
⎭

 
 n−1

n

i=1

1
p

 for x≥x1 and for p>0. From pro-

perties of the measure RDp we know that the function f(∙) is decreasing, strictly 
convex on (x1,xn−1), and affine on (xn−1,xn). Moreover, we have that f '−(xi)= f '+(xi) 
for i=2,3,…,n−1, therefore the function f '(∙) exists and is continuous for x>x1. 
Consequently, we have that f(∙) is convex on (x1,xn). Thus, by using Lemma 1 we 
obtain that

			   f(xk−�)+f(xl+�)≥ f(xk)+f(xl).	 (6)

Moreover, we observe that

RDp (l, X̄ )=�    1   ⎧⎪
⎩

   ∑  (max{xj−xl−�,0})p+(max{xk−xl−2�,0})p ⎫
⎪
⎭
 
 
�n−1 j≠k, j≠l

1
p

	   
=⎧

⎪
⎩

   1    ∑(max{xj−xl−�,0})p⎫
⎪
⎭
 
 
  = f(xl+�)n−1 j≠l

1
p

 	 (7)

and

RDp (k, X̄ )=�    1   ⎧⎪
⎩

   ∑  (max{xj−xk+�,0})p+(max{xj−xk+2�,0})p ⎫
⎪
⎭
 
 
�n−1 j≠k, j≠l

1
p

	   
>⎧

⎪
⎩

   1    ∑(max{xj−xk+�,0})p⎫
⎪
⎭
 
 
  = f(xk−�).n−1 j≠k

1
p

 
	 (8)
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Note that equality in (7) follows from the fact that max{xk−xl−2�,0}=0. By 
using (6), (7) and (8) we obtain that

RDp (k, X̄ )+RDp(l, X̄ )>f(xk−�)+ f(xl+�)≥ f(xk)+ f(xl)=RDp(k, X)+ RDp(l, X),

which completes the proof of the Theorem. 

Proof of Theorem 3

Without loss of generality, we can assume that max xi<max  yj
i=1,…,n j=1,…,m

. Consider

 ARDmax (X∘Y )−ARDmax (X )−ARDmax (Y ) 

=∑ � max  yj−xi�+∑ � max  yj−yi�−∑ � max  xj−xi�−∑ � max  yj−yi�
n

i=1 j=1,…,m

m

i=1

n

i=1j=1,…,m j=1,…,n

m

i=1 j=1,…,m

=∑ � max  yj−xi�−∑ � max  xj−xi�= n∙� max  yj− max  xj�>0.
n

i=1 j=1,…,m

n

i=1 j=1,…,n j=1,…,nj=1,…,m

Note that lim ARDp(X )= ARDmax(X )
p→∞

 for any (Γ, X). Therefore there exists p0>0 
such that for every p> p0 we have that ARDp (X∘Y )>ARDp (X )+ARDp (Y ). 

Proof of Theorem 4

Let X=(x1,…,xn) denotes the vector of incomes of population Γ1 and Y=(y1,…,yn)  
denotes the vector of incomes of population Γ2. Then the aggregate relative depri-
vation of order p>0 of the combined group Γ1⋃ Γ2 has the following general form

ARDp (X ∘Y )=∑ �         1       ⎧⎪
⎩
∑ (max{xj−xi,0})p+∑ (max{yk−xi,0})p ⎫

⎪
⎭
 
 
�

n

i=1 n+ m−1 j≠i k=1

1
pm

	       
+∑ �         1       ⎧⎪

⎩
∑ (max{yj−yi,0})p+∑ (max{xk−yi,0})p ⎫

⎪
⎭
 
 
�   .

m

i=1 n+ m−1 j≠i k=1

1
pn

 

If X=Y (and consequently m=n) and there exists at least one pair of indexes 
i, j=1,…,n, i≠j such that xi≠xj, then

ARDp (X∘X)=2∑⎧
⎪
⎩

     1    2∑(max{xj−xi,0})p⎫
⎪
⎭
 
 
<2∑⎧

⎪
⎩

    1    2∑(max{xj−xi,0})p⎫
⎪
⎭

 
   

n

i=1 2n−1 j≠i i=1

1
pn

1
p

2n−2 j≠i

	     
=2∑⎧

⎪
⎩

    1    ∑ (max{xj−xi,0})p⎫
⎪
⎭
 
 
  = 2∙ARDp(X ).

n

i=1 n−1 j≠i

1
p
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Convergence of Conflict Sets and Applications

Anna Denkowska1

Abstract   

The conflict set of a finite family of pairwise disjoint closed subsets of the Euclidean 
space is the set of those points whose distance to the union of these sets is realized 
in more than one of them. The conflict set is always closed. We are interested in 
the situation when the sets in question evolve in time. The best language which 
allows us to express such a deformation in time is that of the Kuratowski conver-
gence of closed sets. The notion of conflict set has a wide range of applications, from 
pattern recognition to geographical or economic issues such as testing distribution 
and availability patterns (e.g. for hospitals, schools or shopping centers distribution; 
it belongs to civics and planning) like in central place theory or location models, 
or in correlating sources of infections in epidemics, and so on. In this note we 
present and announce some new results concerning the semicontinuity of the con-
flict set and discuss them from applications’ point of view.

Keywords: conflict sets, Voronoi diagrams, spatial economic analysis 
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1 Anna Denkowska, Cracow University of Economics, e-mail: anna.denkowska@uek.krakow.pl

21

mailto:anna.denkowska%40uek.krakow.pl?subject=


1. Introduction
The notion of conflict set and the similar notion of medial axis (skeleton) – the latter 
being one of the cornerstones of pattern recognition – have a large range of appli-
cations in robotics, physics (e.g. wavefront propagation) or mathematics (e.g. in 
singularity theory). The conflict set of two disjoint subsets of ℝn is the collection 
of points that are equidistant to both sets. This definition may be extended to more 
than two sets. Even though we consider here the Euclidean metric, we could replace 
it successfully by another one. The conflict set may be interpreted as the place 
where the ‘influences’ of two ‘centers’ meet or clash. This yields a new interpretation 
of some equilibrium models. Skeletons and also conflict sets are considered to be 
highly unstable. We are interested in the behavior of the conflict set when the sets 
that define it are subject to deformation. This deformation is conveniently expressed 
using the Kuratowski convergence. Such an approach shows that there is a kind of 
stability, namely a lower semi-continuity (in some specific cases even continuity) 
both of the skeletons and conflict sets.

A particular example of conflict sets are the Voronoi diagrams defined for singletons. 
They are used in the study of geoeconomic, logistical and macroeconomic issues. 
The present note put forward the theoretical background for further studies in 
applications of conflict sets from the dynamic point of view. It should be pointed 
out that the range of already existing applications of conflict sets in geoeconomic 
problems is rather restricted. They are met within modelling the relative size of each 
country’s economy in terms of nominal GDP (where the weighted Voronoi diagram 
is used) or in logistics (e.g. the distribution pattern problem for discount chains in 
urban planning). However, according to the remarks in [Kisiała et al., 2017] in 
Polish scientific literature these issues are hardly covered, as opposed to western 
publications. In any case, a dynamic approach to Voronoi diagrams has almost 
not been exploited yet even in the worldwide literature. What we mean here by 
‘dynamic approach’ is the study of Voronoi diagrams of sets of points evolving in 
time (points that can split or merge). The only publications in this field up to now 
seem to be [Reem, 2011] and [Roos, 1993].

A natural tool and a one that has not been used before for the study of time-evolving 
conflict sets are provided by the Painlev´e-Kuratowski convergence of closed sets. 
It allows to describe properly the changes occurring in time and keeping track of 
the distribution as well as detecting the possible merging of points in the case of 
Voronoi diagrams. Moreover, it constitutes a different approach to the problem 
than the one presented in [Reem, 2011] or [Roos, 1993]. Among the first theore-
tical questions to answer is the question concerning the stability of the diagram. 
This has a particular impact on the applications, especially as the convergence of 
Voronoi diagrams is of importance in the statistical clustering method known as 
the k-means clustering, or in the peculiar example of a Nash equilibrium – the 
Hotelling location model (principle of minimum differentiation on the market).  
From these remarks we can propose two directions for further studies. One is the 
stability question and its applications in stability analysis and modelling of market 

22

Anna Denkowska



sharing, while a second one would be the possibility of describing equilibria of some 
market or logistical models with continuously varying data. 

2. Origins of the basic notions
The convergence of closed sets was introduced in 1902 by the French mathema-
tician Paul Painlev´e as a development of an earlier work of Felix Hausdorff. 
Kazimierz Kuratowski gathered all the results, set them in order and presented in 
his book Topology. The Kuratowski convergence, as it is often called nowadays, 
has found many applications in optimal control [Frol´ık, De Giorgi, Franzoni, 
Dal Maso] in the ’80s of the 20th century and since the ’90s it has made its way to 
singularity theory. The skeleton (medial axis) of a domain in ℝn, i.e. the set of points 
whose distance to the boundary is realized by more than one point, was introduced 
in 1967 by Henry Blum as a basic tool for pattern recognition. The related notion 
of conflict set can be traced back to such classical geometric constructions as that 
of the parabola: the conflict set of a point and a line. 

3. Medial axes, conflict sets and Voronoi diagrams
Consider a nonempty, closed set X in ℝn, where ℝn is endowed with the Euclidean 
metric. Given a ∈ ℝn, we put m(a):= {x ∈ X | ||a − x|| = d(a, X)} for the set 
realizing the Euclidean distance d(a, X) of a to X. Note that in our setting, m(a) ≠ ∅.

Definition 3.1. The set MX:={a ∈ ℝn | #m(a) > 1} is called the medial axis of X 
(originally: of the open set ℝn \ X).  

Let now X1, X2 in ℝn be two nonempty, disjoint sets. 

Definition 3.2. The set Conf(X1, X2) := {x ∈ ℝn | d(x, X1) = d(x, X2)} is called the 
conflict set of X1, X2.

X2

X1

Conf(X1,X2)

Figure 1.  Conflict set 

Source: own work.

Additionally, we introduce open sets called territories.

Convergence of Conflict Sets and Applications

23



Definition 3.3. Ter(X1, X2) :={x ∈ ℝn | d(x, X1) < d(x, X2)}called the territory of X1 
(w.r.t. X2) and the analogous territory Ter(X2, X1) of X1 w.r.t. X2.

X2

X1

Conf(X1,X2)

Ter(X2,X1)

Ter(X1,X2)

Figure 2. Territories of two sets 

Source: own work.

Then Conf(X1,X2) is the common boundary of the two territories. For more than 
two sets: X1,…, Xp in ℝn (again: closed, nonempty, pairwise disjoint), the conflict set 
is defined using a slightly modified notion of the territories for the family of sets 
X:={X1, …, Xp}.

Definition 3.4. The set Ter−(Xi, X ) := {x ∈ ℝn | d(x, Xi) ≤ d(x, Xj), j = 1,… , p} 
is called the closed territory of Xi w.r.t. the family X and then the conflict set of this 
family is defined to be Conf(X ) := ∪i≠j (Ter−(Xi, X ) ∩ Ter−(Xj, X ))

We also introduce the open territory  Ter(Xi, X ) := {x ∈ ℝn | d(x, Xi) < i≠j 
min d(x,Xj)}.

Definition 3.5. If all the sets Xi ={xi} are singletons the medial axis of their 
union coincides with their conflict set and is called the Voronoi diagram of the 
system of points {x1,…, xp}.

Conf(X1,X2,X3) X2

X1 X3

Figure 3. Voronoi diagram of three points 

Source: own work.
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Observation 3.6. There is a natural relation between the conflict set of the family   
X:={X1,…,Xp} and the medial axis of the set ∪X= X1 ∪…∪ Xp,  namely:

Con f(X)=M∪X\∪ p
i=1 Ter(Xi,X)

X2

X1
MX1∪X2

Conf(X1,X2)

Figure 4. Conflict set and medial axis 

Source: own work.

Remark 3.7

The definition of the conflict set makes sense also if the sets – instead of being 
disjoint – are pairwise distinct and none of them is contained in the union of the 
remaining ones. However, we may lose the thinness of the conflict set in this case.

X1 X2

Conf(X1,X2)

Figure 5. A ‘fat’ conflict set of non-disjoint sets

Source: own work.
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4. The lower and upper Kuratowski limits
Consider a set E⊂ℝk×ℝn in the variables (t, x), where t plays the role of the para-
meter.

Let π(t, x) = t and for t ∈ π(E), Et:= {x ∈ ℝn | (t, x) ∈ E} denotes the section or fibre 
of E at t. 

Fix an accumulation point t0 of π(E).	

Definition 4.1. (Lower and upper Kuratowski limits).

x0 ∈ lim inft→t0
Et ⇔ ∀ neighborhood U of x0, ∃ a neighborhood V of t0, such that

∀t ∈ V ∩ π(E) \ {t0}, Et ∩ U ≠ ∅;

x0 ∈ lim supt→t0
Et ⇔ ∀ neighborhood U of  x0, ∀ neighborhood V of t0, 

∃t ∈ V ∩ π(E) \ {t0} such that Et ∩ U ≠ ∅.

From the definition it follows that lim inft→t0
Et ⊂ lim supt→t0

Et.

Definition 4.2. The set E ⊂ ℝn is said to be the Kuratowski limit of Et when t → t0, if 

lim supt→t0
Et ⊂ E ⊂ lim inft→t0

Et

Proposition 4.3.

1.	 The lower and upper limits are closed sets;
2.	 The lower and upper limits remain unchanged, if we replace Et by their 

closures Et;
3.	 If the sets Et are compact, then limt→t0

 Et=E≠∅ ⇔ limt→t0
 distH(Et,E)=0

Therefore, from now on we consider only closed sets.

5. O-minimal structures
In order to prove the stability results we are aiming at, we have to tame the topology 
of the sets considered. We will restrict ourselves to sets that are definable in some 
o-minimal structure cf. [Coste, 2000]. For simplicity, further on we shall focus our 
attention on semi-algebraic sets.

Remark 5.1. The classes of sets introduced in the following two definitions may 
seem abstract at first sight but actually they are the type of sets most often met 
within the usual economic models. Indeed, modelling involving polynomials leads 
directly to the semi-algebraic setting; on the other hand, if the exponential or the 
logarithm is used, more general o-minimal structures get involved.

Definition 5.2. (O-minimal structure). An o-minimal structure on ℝ expanding the 
real field (R,+,.) is a sequence {Sn} of families S = Sn ⊂ P(ℝn) of subsets of ℝn 

satisfying:
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∀ n ∈ ℕ (A, B ∈ Sn ⇒ A∩B, A∪B, ℝn\A∈ Sn);            

∀ n, m ∈ ℕ (A ∈ Sn, B ∈ Sm ⇒A×B ∈ Sn+m);

∀ n ∈ ℕ ∀ A ∈ Sn+1, Π(A)∈Sn, gdzie Π: ℝn×ℝ ∍(x,t)⟼x∈ℝn; 

∀ n ∈ ℕ, for all P ∈ ℝ[x1,…,xn], P -1(0) ∈ Sn; S1  consists exactly of all the possible 
finite unions of intervals of any type (in particular, points). 

The sets belonging to the classes Sn are said to be definable in the structure S.

Definition  5.3. (Semi-algebraic set). A set X ⊂ ℝn is called semi-algebraic, if it can 
be described by finitely many polynomial equations and inequalities, which amo-
unts to say that it is of the form X=∪ p

i=1 ∩ 
r
j=1 {x ∈ ℝn|pi(x)=0, qij(x)>0}, where 

pi, qij are real polynomials of n variables.
Remark 5.4. Any o-minimal structure is an expansion of the class of semi-algebraic 
sets, i.e. Sn contains all the semi-algebraic sets. 

Semi-algebraic sets (just as all definable ones) have a large bunch of nice geometric 
properties, e.g. the interior, the closure, the boundary, the section, the connected 
components of a semi-algebraic set are semi-algebraic as well, and similarly the 
image under projection stays semi-algebraic (Tarski- Seidenberg Theorem).

6. Stability theorems – pre-published results and 
further research
Here we discuss the stability result from [Denkowski, 2016] concerning the medial 
axis, and announce an extension to the case of conflict sets [Denkowska, Denkowski, 
2020] with a few illustrating examples. Interpretations are given in the next section. 
There are three points to note:

High instability of the medial axis: a small deformation of the set may induce a large 
deformation of the medial axis’s structure [Chazal, Soufflet, 2004]; however, in this 
point of view the deformation is not seen as a continuous process.

Express the deformation using the Kuratowski convergence: it turns out that we 
have a kind of stability of the medial axis – we control the latter thanks to the lower 
limit cf. [Denkowski, 2016] see Theorem 6.1 below.

The only additional assumption that we have to make is that the family of sets 
considered is definable in an o-minimal structure. Let us stress again that this is not 
very restrictive, since in most practical situation we are actually dealing with such 
sets (apart from semi-algebraic sets, also a large subclass of subanalytic sets forms 
an o-minimal structure). Indeed, models are most often described by a polynomial, 
or at worst analytic equations and inequalities. 

Theorem 6.1. [see Denkowski, 2016]. If X ⊂ ℝk × ℝn in the variables (t, x) is 
a closed semi-algebraic set and Xt0

= lim Xt
t→t0

, then MXt0
⊂ lim inft→t0

MXt.
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Remark 6.2. This result is optimal, as shown by the example [Denkowski, 2016] of 

X = {(t, x1, x2) ∈ ℝ × ℝ2 | x2 = t|x1|}, for which

MXt
= ∅, if t=0 or MXt

= {0}×(0,+∞), for t>0, or MXt
= {0}×(-∞, 0), for t<0, 

where MXt
 do not converge and MX0 

⊂ lim inft→0 MXt
 = {(0, 0)}

X1

X

X-1

X0
x1

x2

MX1

MX-1

t=-1

t=1
t

Figure 6.  There may be neither convergence nor equality for the lower limit in Theorem 6.1

Source: own work.

Remark 6.2. In accordance with Definition 3.5 of the Voronoi diagram we see that 
Theorem 6.1 is valid in particular also for Voronoi diagrams of sets of points that can 
be parametrized in a definable way. Therefore, it is natural to ask the following 
two questions: (1) is the definability assumption necessary for Voronoi diagrams?

(2) since the Voronoi diagram of a finite set is also the conflict set of the family 
of the singletons forming this set, can there be a counterpart of Theorem 6.1 for 
conflict sets?

The proof of the Theorem 6.1 is based essentially on the particular use of the Curve 
Selection Lemma (a basic tool in the theory of o-minimal structures) and some 
topological arguments. However, they cannot be directly transposed to the case 
of conflict sets. Our further theoretical research (to be published in a forthcoming 
paper) is aimed at answering the two questions stated above. It requires the use 
of some results from [Denkowska and Denkowski, 2012]. The result we are able 
to obtain can be interpreted in the following way: at each time t we compute the 
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conflict set of a constant number of ‘influence centers’ (whose shape plays a role) 
varying continuously with t and that can be described polynomially, then in the limit 
time t0 we can identify no less influence centers whose conflict set is contained in 
the lower limit of the varying conflict sets.

Question (1) is partly inspired by [Roos, 1993]. Actually, the definability seems 
superfluous in case the number of points stays constant: the Voronoi diagrams of 
finite sets of points varying continuously and not merging vary continuously, too. 
This is particularly interesting from applications’ point of view.

7. Applications
A wide analysis of the spatial economic issues is proposed in Gibas and Heffner 
[2007]. The authors stress that many economic analyses do not take into account 
the spatial aspects. In microeconomics, in consumer theory, the choices concern 
non-localized goods; in producer’s theory his position/location is not specified; in 
price theory it is assumed that supply and demand come together on a market with 
unspecified range or location in space; the theory of general equilibrium is concer-
ned with interlinkages between partial equilibria, their circumstances and depen-
dencies but with non-spatial features. Similarly, in macroeconomics, when regional 
and local state aggregate structures are not extracted, then global equilibria can 
hide lack of partial equilibria. The economic analysis is done in such a way as if the 
interaction of space did not play any role in the economic processes. Although it is 
acknowledged that the spatial factor in economic analysis contains a body of know-
ledge with some explanatory aspects, it is usually assumed that it just corroborates 
the conclusions in more details and nothing more. The introduction of a spatial 
dimension or ‘spatial factor’ into the research on economic, or, more generally, 
socio-economic processes makes us aware that traditional economic analysis for-
mulates laws based on the assumption that all objects and goods are in the same 
(one) place. This approach is of fundamental theoretical and practical importance. 
From an economic point of view, however, the impact of space is not neutral. All 
forms of human activity are directly or indirectly related to space. This also applies 
to socio-economic activities. These activities take place in space, depend on the 
properties of the latter, but also shape these properties to some extent. As a result, 
almost all arrangements for socio-economic development (except the most general 
and preliminary) take into account spatial factors. For these reasons, the space with 
its properties, its variants and elements are one of the aspects of socio-economic 
planning, both in terms of scientific and research activity as well as practical plan-
ning. In spatial economic analysis, we deal with different types of space – geodesic, 
geographic, economic and social. Economic and social space is important in spatial 
economic analysis. When determining the research object, it is also important to 
determine its location in space, as it plays a role in the procedure of combining 
similar basic spatial units into larger zone-type systems in view of a classification 
process. Determining zonal arrangements may include both spatially continuous 
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phenomena such as ecological conditioning, land use, demographic characteristics 
or population distribution, as well as discontinuous ones such as economic activity, 
or urbanization. Spatial economic analysis should, therefore, be a specialized 
field of economic analysis, analogous to the analysis of consumption, production 
or international trade. The introduction of a spatial factor for economic analysis 
is another approach to any economic analysis.

The importance of a dynamic approach in geoeconomic applications can be illu-
strated based on Christaller’s Central Place Theory which has been long criticized 
for being static and not taking into account the temporal aspect in the development 
of central places nor the diversified nature of the services, nor the varied distribution 
of the resources. Note that Central Place Theory can be (and was) used both in mar-
ket modelling or shopping centers planification. This is a typical example of a theory 
where our result could prove useful.

One of the tools that illustrate spatial relationships is Voronoi diagrams, which are 
a special example of a conflict set. The Voronoi diagram is constructed for a (finite) 
set of points S on a surface. The surface or domain is divided into cells induced by S, 
each consisting of points that lie nearer to a given point of S than to any other from 
this set [Brassel, Reif, 1979]. The first traceable use of such a division is due to 
Descartes in the 17th century when he used it to present the distribution of the 
matter in the universe [Okabe et al., 2009]. We encounter Voronoi diagrams in the 
literature on the subject, e.g. when presenting the relative size of the economy 
of each country around the world in terms of nominal GDP. “If the global economy 
were a living, breathing organism, it might look similar to a dynamic Voronoi 
diagram” wrote Shawn Langlois editor and writer at MarketWatch, Los Angeles, 
who created a costing site at How-Much.net. Data were collected from the Inter-
national Monetary Fund and an animation was created showing the evolution of 
the GDP of the largest countries in the world in the years 1980–2015, which is 
to illustrate how countries have developed and shrunk relative to each other. In 
Jastrzębska [2017] Voronoi diagrams are used to construct a spatial distribution 
map of real estate transaction prices, i.e. market segmentation and to determine 
price zones and division into expensive and cheap areas. The superiority of Voronoi 
diagrams over MSI, precinct or hexagon cartograms is indicated. The diagrams 
also allow to notice the connection between the value of the property and its loca-
tion, e.g. the distance from the main communication routes or the presence of 
nuisance in the area. Another example of the use of Voronoi diagrams is the 
proposal of a location tax on retail commercial activities as a way to rationally 
shape the service network [Śleszyński, 2019]. The article presents the concept of 
sales tax for stationery stores, depending on the size of sales area and the number of 
population in short distances from the place of sale (in short: location tax). It was 
assumed  that it is possible to shape the balance in terms of demand (population) 
and supply (sales area) in order to avoid market monopolization by the largest enti-
ties. Voronoi diagrams can also be applied to any issues connected with logistics 
planning functions, e.g. path [Long et al., 2011] or location planning; if a concern 
wants to open a new gas station without too much perturbation in the existing 
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network, it should choose a place sufficiently distant from all the other stations 
in the area. This can be chosen as a vertex in the Voronoi diagram and it can be 
determined through a time-linear passing by all the vertices process. In [Kisiała, 
Rutkiewicz, 2017] the authors studied spatial distribution availability patterns 
of discounts. In addition, Voronoi diagrams are also used to develop a universal 
method of exploratory statistical analysis of spatial data. Classic statistics gives 
various types of algorithms for data analysis that perform both regression and 
classification tasks.  In the work [Fiedukowicz et al. 2014] examples of preliminary 
concepts of modification and extension of known methods and statistical algorithms 
are given, including spatial information in these methods. The problem of including 
spatial data in analyses – through universal to some extent – requires an individual 
approach due to the specificity of each method. The authors drew attention to the 
dynamic approach to spatial data analysis. Analysis of time series allows, based 
on a series of cyclic and regular observations, to identify two components including 
the observation series, the trend and seasonality. The main result of our work is 
a mathematical fact that guarantees that along with the spatial changes in the 
output sets, we have full control over their Voronoi diagram.
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The Angle between the 2-dimensional Linear 
Regression Model Lines

Albert Gardoń1

Abstract  

Applying the Mean Squares method to vertical and horizontal distances between 
points observed in a 2-dimentional sample (X,Y) and the relevant linear model we 
obtain two different straight lines, namely ŷ(x) and x ̂(y), i.e. the regression of Y 
with respect to X and the regression of X with respect to Y. The lines intersect at 
the point (X−,Y−) at the angle that is obviously the lower, the greater the determi-
nation coefficient between X and Y. But it turns out that the angle depends not 
only on the correlation between features but also on the ratio of their sample 
dispersions. Based on the angle the region around (X−,Y−) will be discussed, where 
the linear model may be reasonably applied, i.e. where the relative difference 
(with respect to the sample average) between the linear models doesn’t exceed 
an assumed level ε*, e.g. 5%.

Keywords: linear regression model, model evaluation, quality of prediction
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1. Introduction
Let’s assume a 2-dimensional sample (X,Y) is collected. The simplest and the most 
popular way of modelling the common behaviour of the features is the so-called 
linear regression model [Freedman, 2009; Rencher, Christensen, 2012]. It consists 
in fitting a straight line to the 2-dimensional data, treated as points with coordi-
nates (xi , yi) on the real plane, such that the distances between the points and the 
line are minimized. Obviously, the shape of the line depends on the minimization 
criterion. The most popular one is based on the so-called Least Squares method (LS) 
where the sum of the squared vertical or horizontal distances between the points 
and the line is minimized, namely:

�
i

   (ŷ(xi)−yi)
2→min

or

�
i

   (x ̂(yi)−xi)
2→min

This leads to the solutions ŷ(x)=axx+bx, called the regression of Y with respect to X, 
and x ̂(y)=ayy+by, called the regression of X with respect to Y, with the coefficients:

			      
ax=R

SY 
,           ay=R

SX 
, SX SY

bx=Y−− ax X
−

,  by= X−− ayY
−

, 

where R denotes the Pearson’s correlation coefficient and S is the sample dispersion. 
It’s easy to show that both lines always intersect at the point (X−,Y−). But since there 
are 2 different models in fact they will deliver different approximations except 
for this point. The difference will increase with the distance from (X−,Y−) and will 
be the greater, the greater angle between ŷ(x) and x ̂(y). In this paper we calculate 
the angle and discuss the consequences, including its impact on the relative diffe-
rence between the models with respect to the sample average.

2. Case report
Since the slope of a straight line is the tangent of the angle between the horizontal 
X-axis and the line, then the tangent of the angle θ between the linear regressions 
ŷ(x) and x ̂(y) is calculated as the tangent of the difference between the angles θx 
and θy which the lines cut the X-axis at, respectively. However, the models should be 
presented firstly based on the same argument, say x, which requires the reformu-
lation of the regression of X with respect to Y to:

			     	
y ̃(x)= x−by

 .ay 	 (1)
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That means, the second slope is now a ̃y= 1ay
=tanθy  and

	

 1ay 
− ax

tanθ=tan(θy − θx)=  
tanθy−tanθx  =              = 1− R2   SX SY   .

1+tanθy tanθx 1+ ax
ay 

R      S2
X + S2

Y 	
(2)

The angle θ may be also calculated as the angle between the direction vectors of 

the lines, i.e. ux=(1, R
SY ) SX

 and uy=(R
SX , SY

 1). Without losing the generality let’s 

omit the direction of the angle, thus, it may be calculated using the formula for the 
absolute scalar product |uxo uy|, namely:

cosθ= 
|uxo uy|  

=                            =        r(z+1)         ,
�ux��uy�

r(  1√z 
+√z )

�(1+r2z)(r2

z +1) √(r2+1)(r2z+1)  θ∊�0,�−2�,

where z=
S2

Y

S2
X

 is the ratio of sample variances and r=|R| the absolute value of the 

Pearson’s correlation coefficient. Let’s now investigate the function f:

f(r,z)=        r(z+1)         ,  r∊[0,1],  z∊(0,∞),
√(r2+1)(r2z+1)

which is equal to cosθ. Its partial derivatives are equal to:

∂f(r,z) =   (1− r
2)z(z+1)     ,∂r √(r2+z)3(r2z+1)3

∂f(r,z) =    r(1−r2)2(z−1)     ,∂z 2√(r2+z)3(r2z+1)3

Since both denominators are always positive, then the signs of the derivatives 

above depend only on the signs of their numerators. Moreover, ∂f−∂r is always positive 
except for r = 1 where it vanishes identically. In fact, at every point (1,z) the func-
tion f reaches its global maximum with the value:

f(1,z)=        z+1       =1
√(1+z)(z+1)

It leads to the obvious and well known conclusion that the angle θ between the 
regression lines drops when the determination coefficient R2 increases and in case 
of perfectly linearly correlated features X and Y, i.e. when R2 = 1, the angle θ is 
equal to 0. Hence, both linear models become identical in such a case, of course, 
because all the observations are co-linear in this instance.

More interesting and not that trivial conclusions may be drawn from the behaviour 

of ∂f−∂z. It vanishes identically again for r = 1 as well as for r = 0. At the former r 
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there is the maximum of f calculated above and at the latter cos θ reaches its global 
minimum with the value:

f(0,z)=  0 =0,
√z

corresponding to the maximal angle θ =�−2 and the case when the linear models are 

perpendicular one to another and completely useless in practice. Eventually, exclu-
ding the trivial cases mentioned before, for any fixed r∊(0,1) the partial derivative  
∂f−∂z=0 if z = 1. Since the derivative is negative for z < 1 and positive for z > 1, 
then for any fixed r∊(0,1) there is a local minimum of f(r,∙) at z = 1 with the value:

f(r,1)=       r(1+1)      =   2r   .
√(r2+1)(r2+1) r2+1

Thus, for any fixed nontrivial determination R2 , the greater difference between 
the sample dispersions SX and SY, the lower angle θ between the linear regression 
models. To sum up, the angle θ between the linear regression models ŷ(x) and x ̂(y) 
fulfils the following inequality:

θ≤arccos 2
|R|

R2+1

and for R2∊(0,1) it reaches this upper bound only if SX =SY.

To accomplish the investigation of the function f let’s evaluate its limits when z 
tends to 0+ or to +∞. Straight calculations yield:

z→0+
∀r∈(0,1]        lim  f(r,z)= lim         r(z+1)       =   r   =1,

√(r2+z)(r2z+1)z→0+ √r2

z→+∞
∀r∈(0,1]        lim  f(r,z)= lim                            =   r  =1.

z→+∞ √r2

r�1+−1z�

��r2

z +1��r2+−1z�

It suggests that the angle will drop to about 0 even in case of insignificant linear 
dependence between the features X and Y if only the sample dispersions will differ 
extremely one from another. Besides, the last results mean also that the limits at 
(r,z)=(0,0) or (r,z)=(0,+∞) don’t exist.

3. Discussion
In this section we’d like to consider the impact of the results presented on the 
quality of approximations delivered by the linear model. The main purpose of such 
approximations is the prediction of one feature value (response feature, dependent 
feature) given the value of another one (explanatory feature, independent feature 
[Yan, 2009, Cohen et al., 2003]). Nevertheless, such an approximation is usually 
the most interesting far from the region where the center of the sample is observed, 
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namely far from the point (X−,Y−). A natural measure of the linear prediction quality 
is the determination coefficient R2, called also the goodness-of-fit [Draper, Smith, 
1998]. However, since there are always 2 equivalent linear models with the same 
goodness-of-fit then the difference between them should be taken into account when 
discussing the quality. As it was already mentioned in the previous sections the 
difference increases with the distance from the center of the sample and, of course, 
the greater the angle between the model lines, the faster the difference rises.

In order to compare both models it’s good to present them based on the same 
argument, say x, similarly as in (1):

y ̃(x)=
x−by 

= 
1  SY (x−X−)+Y−,

ay R SX

ŷ(x)=ax x+bx
 
=R SY (x−X−)+Y−.

SX

Let’s now denote by ε(x) the absolute value of the relative difference between ŷ(x) 
and y ̃(x) regarding the Y-sample average:

ε(x)=� ŷ(x)−y ̃(x)�= SY � R
2−1�� x−X−�= SY  1−R2 |x−X−|

,
Y− Y− |R|SXRSX |Y−|

that may be understood as a kind of a model error measure. Of course, it’ll be 
required to keep this error at a reasonably low level, say ε*, which may be equal 
e.g. to 5%. This leads to the formula for the maximal distance from the X-sample 
average where the error will be kept at the assumed satisfactory level ε(x)≤ε*:

  			        
|x−X−|≤ ε*|Y−| SX   |R|   ,

SY 1−R2 	
(3)

Besides, substituting (2) the evaluation above can be rewritten including the 
angle θ:

|x−X−|≤            ε*|Y−|        .
�1+ S

2
Y�tan|θ|

S2
X

As shown in the previous section the angle θ between the regression lines is, in 
general, the greatest when both sample variances are identical. This may be under-
stood as the most pessimistic case. But at the same time, a high difference between 
the sample variances may mangle the result delivering virtually better prediction 
than it is indeed. Therefore, this may be another reason for unification of variances 
in the sample before the regression analysis, e.g. by means of the standardization. 
But assuming the sample averages and variances are close one to another the stan-
dardization isn’t that necessary and a region around X-sample average can be esti-
mated based on (3), within the error ε(x) doesn’t exceed a given level ε* in case of 
a given determination R2. Let’s denote this region by �X−−d X−, X−+d X−� . Table 1 
contains its relative radius d, expressed by the percentage of the X-sample average, 
for chosen combinations of ε* and R2. It shows that in case of typical satisfactory 
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determination coefficient R2 = 90% the linear model delivers very good estimates 
(ε(x) < 5%) even for arguments different from the mean by almost half of the 
sample average value.

Table 1. Distance from X− expressed as the percentage of X− where the error level ε* isn’t 
exceeded in case of the given goodness-of-fit R2

  ε* 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

R2

0.70 0.028 0.056 0.084 0.112 0.139 0.167 0.195 0.223 0.251 0.279

0.75 0.035 0.069 0.104 0.139 0.173 0.208 0.242 0.277 0.312 0.346

0.80 0.045 0.089 0.134 0.179 0.224 0.268 0.313 0.358 0.402 0.447

0.85 0.061 0.123 0.184 0.246 0.307 0.369 0.430 0.492 0.553 0.615

0.90 0.095 0.190 0.285 0.379 0.474 0.569 0.664 0.759 0.854 0.949

0.93 0.138 0.276 0.413 0.551 0.689 0.827 0.964 1.102 1.240 1.378

0.95 0.195 0.390 0.585 0.780 0.975 1.170 1.365 1.559 1.754 1.949

0.97 0.328 0.657 0.985 1.313 1.641 1.970 2.298 2.626 2.955 3.283

0.98 0.495 0.990 1.485 1.980 2.475 2.970 3.465 3.960 4.455 4.950

0.99 0.995 1.990 2.985 3.980 4.975 5.970 6.965 7.960 8.955 9.950

Source: the author.

4. Conclusions
The angle between the linear regression lines depends on both, the goodness-of-fit 
and the ratio of sample variances and it’s maximized when they’re identical. It may 
suggest at least one of the samples should be properly scaled. This can be reached 
by the standardization as well which is a typical approach for data unification in 
this sense.

It’s turned out that the region where the linear model gives satisfactory predictions 
doesn’t depend on the sample standard deviation and may be expressed by a per-
centage of the sample average.

The research could be possibly generalized in the future for a multidimensional 
case, though, it will require the much more complicated matrix calculus and it’s 
not clear if the results will have a compact analytical form.
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Analysis of Football Players’ Labor Market 
Migrations Using Panel Gravity Models

Michał Górnik1

Abstract 

The transfer of players between different sport clubs is essential and evokes strong 
emotions in the whole football industry. The objective of the paper is to identify, 
by means of a panel gravity model, global factors affecting football players’ flows 
between clubs located in different countries. The approach, commonly used in 
modelling and predicting trade flows, considers spatial and temporal perspective 
– which can come in handy when determining the right career path for football 
players. The analysis is based on a transfer history from selected European leagues. 
The verified hypotheses concerned the impact of the sport level difference between 
leagues on the number of transfers, as well as the correlation between overall 
country economy and its top-tier league capability to attract football players.
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1. Introduction
Football is said to be the most popular sport in the world, with its origins at the 
beginning of the second half of 19th century – the first football club, Sheffield 
Football Club, was founded in 1855. Since that time, universities and schools 
across Great Britain have treated this game as a possibility to compete and promote 
sports spirit and rivalry. From that earliest moment until now, the game has evolved 
and gained lots of popularity, as new organizations such as FIFA or UEFA started 
to organize international competitions in order to select the best national team or 
a city club. The rising popularity of football can be described by numbers regarding 
2014 World Cup Final – it was viewed in real-time by more than billion people 
across 207 countries. The game has become a huge business and has given rise to 
multiple markets focused on television rights, marketing, bookmakers, souvenirs 
and many more with a growing economic importance. 

This paper deals with the transfer market. Clubs that want to compete for the 
best season results need to acquire football players that could perform better 
than the previously hired athletes. As the form of currently involved players can 
decrease and lots of them can have a negative impact on clubs’ budget due to 
remuneration, transferring them out is also a tool to remove redundant players 
from the team. Transfer market is a significant part of economy – according to 
“The UEFA Club Competition Landscape”, the total value of global fees in summer 
2019 [UEFA, 2019] transfer window amounted to 6.9 billion euro. Eighty clubs 
playing in European Cups were responsible for 58% of this value. The outcomes 
of analyses and methods presented in this paper can be applied in the football 
area by different users. Team coaches seek the best way to identify factors that 
could help them distinguish good and bad players in order to make best decisions 
related to players selling and buying. On the one hand, such an analysis can be 
carried out on physical aspects of players [Nevill et al., 2009] or their performance 
history. On the other hand, millions of football fans are looking for information 
concerning potential incoming transfer, using multiple sources that can spread 
the information very quickly and affect the player market value or tarnish their 
image [Caled, Silva, 2019]. 

One of the most common challenges of analyzing football transfers is the unrelia-
bility of the data related to transfer fees. In some cases, the fee paid is not disclosed 
by teams and it is estimated by means of multiple sources, including regression 
models or even market rumors. The English football league is very popular to 
conduct research on as the data was available and published in a consistent way 
prior to the data regarding leagues from other countries. An attempt to estimate 
the factors that affect the probability of being transferred with a corresponding fee 
was made by Carmichael et al. on Premier League transfer data for 1993–1994 
season [Carmichael et al., 1999]. The problem of transfer fee estimation was also 
tackled by Ruijg and van Ophem with OLS model, which included variables con-
cerning player information and performance statistics [Ruijg, van Ophem, 2015]. 

A continuous workforce movement between different teams and lots of available 
data, that can be analyzed with the current state of information technology and big 
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data, makes footballers a great case study for labor market research. What makes 
sport players unique for this purpose is a vast number of data sources – we can 
retrieve all connections between players and clubs along with all team changes, 
as well as detailed player information such as name, full performance history, 
position and many more. Analyses of the labor markets of other professions – with 
the information sources available, including censuses and surveys, may not yield 
such accurate or meaningful results [Kahn, 2000]. 

The market of football player transfers has been analyzed by several researchers. 
They use mainly network methods to identify all patterns and connection between 
clubs. Li et.al. used transfer data among 23765 worldwide football clubs in order 
to construct a network reflecting employees mobility. They concluded that there is 
no club that acts as a transfer center, and bimodal distributions of node strengths 
indicate different transfer patterns for players [Li et al., 2019]. Another analysis 
conducted on top twenty European leagues aimed at recognizing the clubs that 
constitute a springboard with the use of network analysis. It turned out that 
Standard Liege is a club that sells most players at a good price to the top clubs 
from Europe [Tribušon, Lenič, 2016].

It is worth mentioning that transfers in the football labor market can also be quite 
controversial and may become a subject for studies that focus on social responsi-
bility in sports management. A big debate whether fees paid by clubs to hire new 
players are ethical emerged after Gareth Bale, a Welsh winger, moved to Real 
Madrid from Tottenham London back in 2013. A Spanish club paid 100 million euro 
when the country suffered from an economic crisis and when the unemployment 
rate reached 28% [López Frías, 2018]. 

Practically all papers and analyses dealing with the football transfer market use the 
network algorithms to investigate the strengths of connections between different 
clubs (modelled as the nodes of the network) [see Li et al., 2019]. To the best of 
author’s knowledge, there have been no attempts to apply gravity models to this 
market by now. The extension of the gravity models use – applied successfully 
(e.g. to migrations or labor force movements) – also seems a natural step for this 
specific market.

In the next section, the foundations of the gravity models are briefly summarized. 
The following section specifies the model with the explanatory quantities used. 
It also provides the results of the model estimation. The last section summarizes 
the findings and relates them to the results obtained within the network models 
approach.

2. Methods
The development of spatial econometrics and new geographical economy resulted 
in gravity definition and potential models that use laws of physics to describe 
and explain various socio-economic phenomena. The gravity is derived from the 
Newton’s law of universal gravitation. It states that every point mass pulls every 
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other point mass by a force directed along the line of centers for the two objects. The 
force is proportional to the product of the two masses, and inversely proportional to 
the square of the distance between them. Moving this law into the field of econome-
trics enabled to perform analyses in a new dimension. A spatial factor that is taken 
into account can boost the accuracy of the description of economic processes. 

The force of influence from the Newton’s law can be understood as different pro-
cesses that are characterized by flows between regional entities. Gravity model 
is a tool to understand and test the marginal influence of multiple variables on 
immigration between countries [Lewer, van den Berg, 2008], or interregional 
migration within one country [Pietrzak et al., 2012]. Another application is model-
ling and checking the relevance of factors influencing trade exchange between 
countries [Tinbergen, 1962]. A topic modelled with the use of gravity panel data is 
also flow of quantified direct investments [Szczepkowska, Wojciechowski, 2002]. 
The issues related to using and estimating gravity models were addressed in various 
economic studies, including: [Westerlund, Wilhelmsson, 2011, Burger et al., 2009, 
Kaluza et al., 2010, Krings et al., 2009].

A regression model for gravity in a multiplicative form is described as follows 
[Suchecki, 2010]: 

			            
Yij=α0 

Mα2
i  Pα3

i  Mα4
j  Pα5

j
Dα1

ij  	
(1)

where Yij is the force of influence between i-th and j-th entity, elements of Mi and Mj 
are vectors of entity masses weights, Pi and Pj are variable vectors with entity 
masses. Dij is the distance matrix.

3. Results
The dataset was collected from transfermarkt.com – a website that is the biggest and 
most popular data source for any football transfer market analysis. A list of transfers 
from 28 European countries is considered, taking into account every movement 
within the first two top-tier leagues in each country. Excluding all retirements and 
loan finishing a total number of 54222 transfers in the period of 2014–2020 is the 
basis of this analysis. As the purpose of this paper is to analyze international mo-
vement, all transfers that took place in the same country (i.e. a football player 
changed his team within the same country) were excluded. After performing all 
transformation and filter steps total number of 16950 observations issued. The 
variables that were used for a gravity model were chosen to reflect the migration 
gravity models [Lewer, van den Berg, 2008, Pietrzak et al., 2012] with respect to 
its football nature. They are as follows: 
  GDP_origin, GDP_dest – Gross Domestic Product (EUR) per capita for a country 
of transfer’s origin and destination.
  GEO_Dist – geographical distance between the origin and destination countries 
capitals.
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  UEFA_Rank_diff – a Euclidean distance between UEFA country coefficients. It is 
a measure that takes into consideration the last 5-year performance of clubs 
from a country in European club cups. It reflects the distance between countries 
measured as their football level difference.
  (Lang) – Language – a binary variable indicating the fact of language sharing 
between a pair of countries. 
  League_Size_origin, League_Size_dest – League size – the total number of players 
registered for a given season from all teams within each country’s top-tier league.
  TMV_origin, TMV_dest – the total market value of football players within each 
country’s top-tier league – estimated by transfermarkt.com.

There are multiple model classes that can be used to estimate regression on panel 
data. Two main kinds include models with fixed effects and models with random 
effects. In order to check the right model for a football transfer flow, a Hausman test 
was performed – the null hypothesis was rejected, and thus a model with random 
effects estimator is biased (the chi-squared statistic value of 222 with p-value lower 
than 0.0001). In order to decide whether a time, country pair or two ways effect 
should be included in the model’s specification, the Breush-Pagan statistical test 
was performed. As a result, the model with both country pair and transfer year was 
selected. To estimate the gravity panel model with variables that are fixed in time, 
a Hausman-Taylor estimator was employed. Taking into consideration all the 
variables and logarithmic operation on (1), the following model was specified:

ln(Yij)=α1ln�UEFARankDiff
�ij+α2ln�GDPOrigin�it+α3ln�GDPDest�jt+α4ln�TMVOrigin�it

+α5ln�TMVDest�jt+α6ln�LeagueSizeOrigin�it+α7ln�LeagueSizeDest�jt 

+α8Lang−α7ln�GeoDist�+Bij+Bt+εijt

where Yij is the football player flow from country i to country j, α1−α9 are the 
model parameters, Bij represents country pair effects, Bt time effects whereas ε is 
the random noise. Standardized regression coefficients are reported to assess the 
effect size of each variable on international flow size of football players.

Table 1. Estimated model parameters 

Variable Estimate Std. coefficient p-value

1 UEFA_Rank_Diff –0.26  –0.06 0.01

2 GDP_Origin 0.95 0.14 <0.01

3 GDP_Dest 1.09 0.16 <0.01

4 TMV_Origin 0.24 0.08 <0.01

5 TMV_Dest –0.14 –0.05 0.08

6 LeagueSize_Origin 1.36 0.07 0.01
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Variable Estimate Std. coefficient p-value

7 LeagueSize_Dest 0.80 0.04 0.13

8 Language 0.61 – 0.01

9 GeoDist 5.88 0.76 <0.01

Source: own calculations in R.

Determination coefficient is equal to 0.21, which means the goodness of fit is not 
satisfactory. The parameters associated with the power of top-tier league from 
the destination country turned out to be statistically non-significant. As far as the 
distance is concerned – both geographical and UEFA score distance were signifi-
cant, which means that the spatial factor is important for football player migration 
modelling, and it also supports the hypothesis that sport level difference between 
top-tier leagues between countries is significant for the number of transfers. 
The signs of distance parameters estimates are different. The sign of estimate for 
difference between UEFA rank score is negative thus it can be concluded that the 
increase of sport level between leagues decreases the number of transfers between 
them. The top European leagues are exchanging players between each other, and 
it is hard for a football player to get transferred from a low-level European league 
to one of the so-called “Top five” – Spanish, English, German, French, and Italian. 
Given the negative sign of parameter of ln(GeoDist) in (2) and an estimate of 
geographic distance between transaction countries – which is positive – the number 
of transfer increases when the distance decreases. It means that football players 
tend to change the country to the ones nearby. This conclusion is also supported by 
a positive sign of the estimate of a language variable – it is easier to make a decision 
to move to the country with the same language and where adaptation process is 
faster, which is desired by the acquiring club. The biggest value of standardized 
regression coefficient for variable with geographic distance (0,76) means that this 
is the most influential factor.

As far as the issue of country’s economy and their inflow of abroad players is 
concerned, both variables indicating gross domestic product per capita were sta-
tistically significant with positive signs. When the economy is in better condition, 
more players are switching their teams to those in different countries. This phe-
nomenon is associated with poor countries and their inability to attract foreign 
players. Teams from such countries are forced to contract new players mainly 
from a domestic league, which is not likely to increase the league level in the long-
-term future. By analyzing the parameter estimate and their significance, we can 
conclude that a given country’s economy indeed has an impact on attracting 
players. Analysis of standardized coefficients gives the conclusion that overall 
economy condition has bigger impact on predicted variable than market value of 
football players.

By analyzing a league size measured as the number of total registered players and 
their total estimated market values, we can observe that both variable parameters 
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regarding destination league are statistically non-significant, as opposed to those 
associated with the origin country. As the total number of players in a given country 
increases, more of them are being pushed away to foreign countries. The same 
applies to the total market value of the origin country league – with this value 
growth we can observe a bigger outflux of football players. 

4. Discussion 
Gravity model for football transfers can provide some insights into factors affecting 
the transfer market. It can be concluded that an economic situation of a given 
country is a significant factor in terms of the influx and outflux of football players, 
as well as the difference in football level between top-tier leagues from given 
countries, measured by UEFA country coefficient.

Although this simple model has rather low predictive power R2=0.21, it can be 
further increased, e.g. by including Poisson fixed-effect within the gravity model and 
variables concerning transfer market rumors and football management agencies 
that play an important role in the football marketplace. Another way to extend the 
research is to include the information about transfer fees – due to low public data 
credibility it was not included in the paper. The model that has been investigated 
here can also be applied to other kinds of sports, where transfer fees are not such 
a big issue for acquiring clubs. The flow of money for transfer fees can be estimated 
by means of methods used in this paper – under the condition of finding a reliable 
data source – it would be counterpart for the total trade value gravity models that 
are well adopted when modelling international trade relationships. Another factor 
that is yet to be verified when more data becomes available, is the impact on big 
international tournaments on the transfer market. 
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Selected Credit Risk Models
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Abstract 

The paper is devoted to credit risk models. Two kind of such models based on the 
generalized binomial distributions are presented. Firstly, we investigate the depen-
dent credit risk, using copulas, mainly Archimedean. The influence of the degree of 
dependence on the number and value of lost credits is presented. Secondly, we 
study a case when the main parameter of model, the probability of the insolvent 
obligors, is uncertain. We treat such a parameter as a fuzzy number and we 
combine the randomness and fuzziness in this case. We investigate the number 
of lost credits, too.

Key words: risk credit, copula, generalized binomial distribution, fuzzy numbers, 
number of lost credits
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1. Introduction
The paper investigates credit risk models. We present two kinds of models based 
on the generalized binomial distributions. Firstly, we investigate the dependent 
credit risk [Frey et al., 2001; Heilpern, 2007; KMV-Corporation, 1997; McNeil et al., 
2005]. In classical financial models the random variables are generally independent. 
This assumption is very convenient from mathematical point of view. However, 
it is difficult to expect that the bankruptcies of debtors are independent in practice. 
Common external factors: economic, climatic and political affect them. In particular, 
it may be the changes in stock prices and exchange rates, economic and political 
crises or some catastrophic events. We model the dependent structure using copulas, 
mainly Archimedean. We also study the value of the lost credits. The influence of 
the degree of dependence on the number and value of lost credits is presented. We 
use the Clayton and Spearman copulas to this end.

We also study a case when the main parameter of the model, the probability of inso-
lvent obligors, is uncertain. We treat such  parameter as a fuzzy number [Dubois, 
Prade, 1980; Heilpern, 1992] and we combine randomness and fuzziness in this 
case. In classical approach, we assume that this parameter is estimated on the basis 
of a random and representative sample. However, these conditions are not always 
fully met and we have some doubts as for the accuracy of value p of the obtained 
parameter. For instance, we can treat the value of this parameter as an uncertain 
value, a fuzzy number “about p” in this case [Heilpern, 2020]. We investigate the 
number of lost credits, too. 

2. Dependence
Let us study a portfolio consisting of n obligors and define n Bernoulli random 
variables Y1, …, Yn. They present the statuses of individual obligors: [McNeil et al., 
2005; Heilpern, 2007]

Yj =
⎰1   he not pay
⎱0   he pays .

We will denote a probability that the j-th obligor does not repay the credit as pj and 
that he repays as qj = 1 – pj, i.e.

pj = Pr(Yj = 1).

The joint distribution of Yj is described by the probability mass function (p.m.f.)

f(i1, …, in) = Pr(Y1 = i1, …, Yn = in),

where ij∈{0, 1} and cumulative distribution function (c.d.f.)

F(i1, …, in) = Pr(Y1 ≤ i1, …, Yn ≤ in).

We will investigate the random variable

K =∑Yj 

n

j=0

.
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It presents the number of insolvent obligors.

We allow that the random variables Yj may be dependent, so we can describe the 
dependent structure by copula functions. The copula C is the link between the joint 
c.d.f. F and the marginal c.d.f. Fj. It satisfies the following relation:

F(i1, …, in) = C(F1(i1), …, Fn(in)).

The marginal c.d.f. Fj are equal to

Fj(ij)=
⎰1   ij=1
⎱qj   ij=0 .

Let A ⊂ {1, …, n} and j∈ A iff ij = 1. We will use the notation 1A = (i1, …, in). Now, 
we assume, that the random variables Yj have the same distribution, i.e. qj = q 
and that copula C is exchangeable, i.e. C(u1, …, un) = C(uπ(1), …, u π(n)), for any 
permutation π of set {1, …, n}. If the number of elements |A| = |B| = k, then the 
c.d.f. satisfies the following relation

F(1A) = F(1B) = Fk,n

and Fk,n=C(1,…,1,q,…,q)
k n−k

. The p.m.f. is equal to [Cossette et al., 2002; Heilpern, 
2007]

 
fk,n= ∑(−1)j⎧

⎪
⎩ 

k

j
 ⎫
⎪
⎭
   Fk−j,n

j=0

k

and we obtain

Pr(K=k)=∑(−1)j           n!            Fk−j,n
j=0

k

(n−k)!j!(k− j)!
.

The expected value and variance of K equal [Heilpern, 2007]:

E(K) = np,        V(K) = npq + (n2 – n)(f2,2 – p2).

If the random variables Yj are independent then the corresponding copula Π takes 
the form of Π(u1, …, un) = u1·…·un. The random variable K has the classical bino-
mial distribution and we obtain

Fk,n = qn-k,     fk,n = pkqn-k,     Pr(K = k) =⎧
⎪
⎩ 

n

k
 ⎫
⎪
⎭
   pkqn−k.

The strict, positive dependence, the opposite of independence, called the comono-
tonicity is done by copula M(u1, …, un) = min{u1, …, un}. Then we have

Fk,n=
⎰q   k<n
⎱1   k=n ,

     
fk,n = Pr(K = k) =

�
�0   0<k<n
�q   k=0

�p   k=n
.

Joe [1997] introduced the copula, called a Spearman copula, equal to the convex 
combination of the independency and comonotonicity: (1 – ρ)Π + ρM. The c.d.f. 
takes the form

Fk,n=
⎰(1−ρ)qn-k+ρ q   k<n
⎱1		    k=n ,

where ρ is a Spearman coefficient of the correlation.
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The Archimedean copulas are the more popular copulas and often used in practice. 
They take a simple form induced by the generator φ:

C(u1, …, un) = φ-1(φ(u1), …, φ(un)),

where generator is the decreasing, convex function, such that φ(0) = ∞ and φ(1) 
= 0. The c.d.f. is equal to Fk,n = φ-1((n – k)φ(q)) in this case. The Clayton copula, 
one of such copulas, is defined by the following formula:

C(u1, …, un) = (u1
-α + …+ un

-α – n + 1)-1/α,

where parameter α > 0 reflects the degree of dependence. The Kendall coefficient 
of correlation is equal to τ = α/(α + 2) and we obtain

Fk,n = (1 + (n – k)(q-α – 1))-1/α

in this case.

Example 1. We analyze a portfolio consisting of n = 30 obligors. Let the probability 
of solvency of every obligors is equal to q = 0.8 and the dependent structure of Yj is 
described by Clayton copula. The distribution of K, the number of insolvent obligors, 
for different values of parameter α reflecting the degree of dependence is presented 
in Figure 1. We chose α equal to 0 (independency), 1.3, 6 and ∞ (comonotonicity). 
The corresponding values of Kendal coefficient of correlation and variance are 
equal to 0, 0.39, 0.75, 1 and 4.8, 33.57, 82.76, 144.
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Figure 1. Distribution of the random variable K for different degrees of dependence – 
Clayton copula

Source: own elaboration.
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We can see that the growth of value of parameter α (growth of the degree of 
dependence) implies a change in shape of the graph of p.d.f. of the distribution 
of insolvent obligors. It changes from the classical unimodal distribution with 
a small asymmetry to the distribution focusing on two points 0 and 1 only through 
the distributions with a right-sided asymmetry. For the independence, the distri-
bution of K is condensed around the expected value equals 6. As the relationship 
increases, the mass of probability shifts to the left side until the lack of insolvent 
obligors obtains the most value of probability. For bigger dependencies the extreme 
values (there are no insolvents obligors or all of them are insolvent) are the most 
probable. In addition, the variance increases as the dependence of Yj increases. 

Now, we will study the value of insolvent credits. Let the random variables Zj 
represent the value of lost credits and S is a global value of the lost credit, i.e.

S =∑Yj Zj 

n

j=1
.

Then, if random variables Zj and Yj are independent and Zj have the same distri-
bution, then the moment generating function (m.g.f.) of the random variable S 
takes the form of [Cossette et al., 2002; Heilpern, 2007]

MS(t)=∑⎧
⎪
⎩

n

k
⎫
⎪
⎭
   fk,n (MZ(t))k

k=0

n

.

Therefore S is the combination of the convolutions of the random variables Zj 
and we have

FS(x)=∑⎧
⎪
⎩

n

k
⎫
⎪
⎭
   fk,n FZ

*k(x)
k=0

n

,

where FS and FZ are the c.d.f. of S and Zj. In case of comonotonicity we obtain

FS(x)=q+pFZ
*n(x).

It depends on the n-th convolution of Zj only. The expected value of random 
variable S is equal to E(S) = npE(Z). We can compute the variance of S using the 
m.g.f. of this random variable.

Example 2. (continuation of Example 1) Let the value of a lost credit Zj have the 
exponential distribution and E(Zj) = 2. The graphs of the p.d.f. of random variable 
S, the global value of the lost credit, are presented in fig. 2 for α equal to 0, 1.3, 
6, 20 and ∞. The corresponding values of Kendal coefficient equal 0, 0.39, 0.75, 
0.91 and 1. We also present a graph of the p.d.f. of S for q = 0.3 and α = 4 (τ = 2/3).
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Figure 2. Distribution of the random variable S for different degrees of dependence – 
Clayton copula

Source: own elaboration.

We obtain E(S) = 12 and the variance of such random variable for different values of 
the parameter α is equal to 43.25, 158.07, 354.95, 503.78 and 600.00 respectively. 
We see, that the variance increases as the dependence (the value of parameter α) 
increases.

For smaller and medium dependencies we have a similar situation as for the 
random variable K. However, for bigger dependencies we obtain a smaller mass 
probability focused around 60. This effect is more visible for smaller probabilities 
of solvency obligors q, see the last graph on Figure 2.

When the dependence structure of Yj is described by another copula we can obtain 
more irregular distributions of random variables K and S.

Example 3. (continuation of Example 1 and 2) Let the dependence structure of Yj 
is characterized by Spearmen copula. We study four cases, when the Spearman 
coefficient of correlation ρ is equal to 0.1, 0.4, 0.6 and 0.8. The distributions of the 
random variables K and S are presented on Figures 3 and 4. 
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Figure 3. Distribution of the random variable K for different degrees of dependence – 
Spearman copula

Source: own elaboration.
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Spearman copula

Source: own elaboration.
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We can see that the graph of the distribution of random variable K has the local 
maximum in near the expected value and the graph of S has two local maxima.

3. Fuzziness
First we recall some definition and notion connected with the fuzzy sets [Zadeh, 
1965; Dubois, Prade, 1980]. The fuzzy set A defined on the space Z is described 
by its membership function μA: Z → [0, 1]. The crisp sets Aα = {z ∊ Z | μA(z) ≥ α}, 
when 0 < α ≤ 1, are called the α-cuts of the fuzzy set A and they univocally 
characterize it. Set A1 is the core of A and A0, the closure of set {z ∊ Z | μA(z) > 0}, 
is the support of fuzzy set A. 

We will use the fuzzy numbers in this section. They are the fuzzy subsets of the 
real line R and every α-cut Aα of them is the compact interval [AL

α , AU
α ] [Dubois, 

Prade, 1980]. The membership function of the trapezoidal fuzzy number A = (a, b, 
c, d) is linear on the intervals [a, b] and [c, d]. The interval [a, d] is the support of 
the fuzzy number while [b, c], when the membership function takes value one, is 
the core of it. If b = c, then we get the triangular fuzzy number A = (a, b, d). 

Let f: Z → R and A be a fuzzy subset of Z, then f(A) has the following membership 
function 

f(z)=x
μf(A)(x)=sup μA(z).

It is so-called extension principle [Zadeh, 1975]. We can define the arithmetic 
operations * on fuzzy numbers using such a principle. The membership function of 
the fuzzy number A * B is equal to 

x*y=z
μA*B(z) = sup {min{μA(x), μB(y)}} . The borders 

of α-cuts of A * B are defined by the borders of A and B, e.g. �A+B�L
α=AL

α +BL
α, 

�A+B�U
α=AU

α+BU
α.

The mean value of the fuzzy number A equals [Campos, Gonzalez, 1989;Heilpern, 
1992]

MV(A)=1−
2

��AL
α+AU

α � dα
1

0

.

The borders of α-cuts and the mean value for the trapezoidal fuzzy number 
A=(a, b, c, d) take the following form

AL
α=(b−a)α+a, AU

α=(c−d)α+d, MV(A)= a+b+c+d
4

.

Now we assume that the random variables Yi, which described the status of an 
obligor, are independent. Then the random variable K, the number of insolvent 
obligors, has the Binomial distribution B(n, p). Let us also assume that we cannot 
make valid estimation of the main parameter p, the probability that the obligor 
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does not repay the credit. We know the imprecision value of such a parameter 
only. In this case we can treat it as the fuzzy number P. This fuzzy number induces 
the fuzzy subset K on the family of binomial random variables, with the following 
membership function [Heilpern, 2020]:

μK(K) = μP(p),

where K ~ B(n, p), using the extension principle. The sample size n, the number 
of obligors in our case, is fixed. If we know only, that the probability p is equal to 
“about p0”, then we can treat such information as the fuzzy number P = (p1, p0, p2). 

We define the expected value of K using the extension principle. Then we obtain

μE(K)(m) = μP 
⎧
⎪
⎩

m—
n 

⎫
⎪
⎭

.

In a similar way we can determine the variance of K and the fuzzy probability 
Pr(K ∊ B), where B is a crisp event. Let f(p) = Pr(K ∊  B), where K ~ B(n, p), then

f(p)=p0

μPr(K∊ B)(p0) = sup  μP(p).

Example 3. Let n = 30. We obtain information that the probability of event that 
the obligor does not repay the credit is equal to “about 0.2”. We treat it as the 
fuzzy number P = (0.15, 0.2, 0.3). The value of the membership function of K at 
K ~ B(n, p) equals

μK(K)=μP(p)=
�
�−10p+3   0.2<p≤0.3
�   20p−3   0.15≤p≤0.2

�       0        otherwise  

The expected value of K is the triangular fuzzy number (4.5, 6, 9) with the mean 
value 6.375. We can interpret E(K) as “about 6”. But the variance is not the trian-
gular fuzzynumber. Its α-cuts are equal to

V(K)α = [-0.075α2 + 1.05α + 3.825, -0.3α2 – 1.2α + 6.3],

because the function g(p) = 30p(1 – p) defining the variance is increasing on 
[0.15, 0.3] and mean value of the variance is equal to 4.9625. The graph of the 
membership function of this fuzzy set is presented in Figure 3a.

Now, we compute the probability Pr(K = 7), i.e. the probability that there are seven 
insolvent obligors. Let K ~ B(n, p) and f(p) = Pr(K = 7). We obtain a maximal 
value of this function for p0 = 7/30. We have f(p0) ≈ 0.1700 and μP(p0) = 2/3. 
Then the α-cuts of the fuzzy probability are equal to

Pr(K=7)α=
⎰      [f(0.05α+0.15), f(7/30)]       0≤α≤2/3
⎱[f(0.05α+0.15), f(−0.1α+0.3)]   2/3<α≤1 .
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The graph of the membership function of such a fuzzy set is presented on Figure 
3b. The mean value of such fuzzy probability is equal to 0.1448. The graph is not 
continuous in p = f(p0).
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Figure 3. The membership functions of V(K) and Pr(K = 7)

Source: own elaboration.

4. Conclusion
We presented two credit risk models. They are a generalization of the classical 
models. Firstly, we assumed that the statuses of individual obligors are dependent 
Bernoulli random variables. Therefore, we obtained a generalized, dependent 
binomial distribution. We investigated the number and the value of lost credits. 
We studied the distribution of such random variables with respect to the different 
degrees of dependency. These distributions are significantly different from the 
classical distributions with an independent assumption. In future works, we wish to 
widely investigate the model with a random number of obligors.

Next, we analyzed a situation when the main parameter of the model, the proba-
bility of insolvent obligors, is uncertain. We regarded it as the fuzzy number and 
investigated the number of lost credits in this case. We derived the fuzzy parameters 
of such a fuzzy variable, the fuzzy expected value and variable, and the probability 
of a fuzzy event. In the future, we would like to broadly expand this topic and 
conduct the empirical research.
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Optimal Path in Growth Model
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Abstract 

In the paper we consider the Ramsey-Koopmans-Cass growth model where some 
of the parameters depend on time. The main focus of the work is on the dependence 
of the model and its solution to the perturbance of parameters. The conditions 
under which the solution of the perturbed model approximates the solution of the 
original model, are formulated.
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1. Introduction
The economic models often depend on parameters whose values may be given or 
estimated with some accuracy. Usually, having a set of data and using some statisti-
cal methods or numerical methods one produces a value or function representing 
these data. Therefore the method of how such an approximation is obtained may 
influence the solution of the considered model.

In this paper we study the influence of approximation of parameters in the Ramsey 
model on the stability of optimal path. Some of the parameters are constants, the 
other ones depend on time. They are approximated by sequences of values or sequ-
ences of functions that converge in an appropriate sense to their limits. 

In order to provide the answer to the problem of stability of the optimal con-
sumption path we recall the concept of Γ -convergence and the basic framework of 
its application in the context of the model considered. Next, the description of the 
Ramsey model is cited after Barro and Sala-i-Martin [2004]. The approximation 
of the model is constructed by considering the approximations of: the wage rate, 
the rate of returns, the growth rate of population and the degree of relative risk 
aversion, defining CRRA utility. Under the appropriate assumptions on those appro-
ximations we prove stability of the optimal consumption path.

2. �-convergence as a tool in perturbed optimization
In the perturbed optimization problems the crucial point is to assure the conver-
gence (in a proper sense) of minima and minimizers of functionals to the respective 
minimum and minimizer of limiting functional. It was De Giorgi who studied this 
issue as the first. In his monograph [1984] he summarized his earlier works in this 
area and the developed concept of Γ-convergence. Parallely, Kazimierz Kuratowski 
extended the concept of Hausdorff metric, defined for nonempty and compact 
(therefore, in ℝn: closed and bounded) sets, to the case of closed sets. Moreover, 
he showed the equivalence between the Γ-convergence of functionals and the 
Kuratowski convergence of their epigraphs [Kuratowski, 1961].

Basing on Dal Maso [1993], we cite below the basic definitions and theorems on 
the epigraphical convergence to give a brief outline of both approaches. In what 
follows we denote by X a topological space2 and fn: X →ℝ− (where ℝ−=ℝ ∪ {±∞} is 
the extended real line) is a sequence of functions defined in it, while N(x) denotes 
the family of open neighbourhoods of the point x.

2 In the definitions and theorems we consider X to be a topological space, metric space or topological 
vector space. They are mathematical structures, which allows usage of different operations on the 
elements of set X, like measuring the distance or operating on vectors, respectively. For the sake of 
our further applications the reader may consider X=ℝn with standard metric or space of continuous 
functions X=C�(0,∞)� with the topology of uniform convergence, which both satisfy all the necessary 
requirements of each case.
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Definition 1. Let function f: X →ℝ be given, where X is a topological space. The 
epigraph of function f  is the set:

epi(f) ≔ {(x,v) ∈ X×ℝ: �≥f(x)}

Geometrically, the epigraph of function is the part of the Cartesian product X×ℝ 
above the graph of f. For a lower semicontinuous function f its graph is a closed 
subset of the Cartesian product X×ℝ.

Definition 2. [Dal Maso, 1993, p. 38] The lower and upper Γ-limits of the sequence 
(fn) are defined as follows:

n→∞
flow−Γ ≔ Γ−lim inf fn(x) ≔ sup lim inf inf fn(y).

U∈N(x) n→∞ y∈U

n→∞
fupp−Γ ≔ Γ−lim sup fn(x) ≔ sup lim sup inf fn(y).

U∈N(x) n→∞ y∈U

If flow−Γ = fupp−Γ ≔ fΓ, then sequence � fn� is said to be Γ-convergent to fΓ  and 

function fΓ is Γ-limit of it.

We define now the lower and upper Kuratowski limits of the family of sets (net) 
(En) ⊂ X, when n→∞.

Definition 3. [Dal Maso, 1993, p. 41] The lower and upper Kuratowski limits of 
a sequence of sets are respectively:

n→∞
x ∈ K−lim inf En⇔∀ U ∈ N(x) ∃ k ∈ ℕ ∀ h≥k:   U ∩ Eh≠∅

n→∞
x ∈ K−lim sup En⇔∀ U ∈ N(x) ∀k ∈ ℕ ∃ h≥k:   U ∩ Eh≠∅.

Clearly, K−lim inf n→∞ En⊂ K −lim sup n→∞ En. If the converse inclusion holds as 
well, we denote the resulting set by E ≔ K−lim n→∞ En and call it the Kuratowski 
limit of (En) when n→∞. Therefore, (En) converges to some set E as n→∞, iff

n→∞
K−lim sup En⊂ E ⊂ K − lim inf En.

n→∞

The next theorem establishes the relation between the Γ-convergence of a sequence 
of functions and the Kuratowski convergence of their epigraphs.

Theorem 1. [Dal Maso, 1993, p. 44] Let flow−Γ and fupp−Γ be respectively the lower 
and upper limits of a sequence of functions � fn�. Then:

epi� flow−Γ� = K−lim sup epi� fn�,
n→∞

epi� fupp−Γ� = K−lim inf epi� fn�.
n→∞

Therefore, � fn� Γ-converges to fΓ if and only if epi� fΓ� = K−lim n→∞ epi� fn�.

The next theorem describes the fundamental role of Γ-convergence in optimiza-
tion theory. This is a particular case of more general theorem 7.12 in Dal Maso 
[1993, p.73].
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Let us denote by M� f � the set of minimizers (possibly empty) of a function 
f : X→ℝ−, i.e.:

M� f �≔�x ∈ X:   f(x)=inf f( y)�.
y∈ X

Theorem 2. Assume that a sequence � fn� is Γ-convergent to fΓ. Then:

a.  K−lim inf    M� fn� ⊂ M� fΓ�,
n→∞

 

i.e. any limit of a sequence of minima yn is a minimizer of fΓ.

b.	 if K−lim    M� fn� ≠ ∅
n→∞

, then M� fΓ� ≠ ∅ and minx∈X fΓ(x)=limn→∞ �infx∈X fn(x)�, 

i.e. if there exists a limit of a sequence of minima yn, then the function fΓ has at 
least one minimizer (this limit itself, maybe also some other) and minimum of 
fΓ is approximated by minima yn.

c.	 if fΓ is a proper function3, then 	  

				       
M� fΓ� ⊂ K−lim sup M� fn�,

n→∞ 	  
i.e. if fΓ has at least one finite value, then any minimizer of this function is limit 
of a sequence of minimizers yn.

It was shown in Kornafel [2018] that both pointwise and Γ - limits may exist, but 
may be different. Generally, they are independent concepts and it may happen 
that one of those limits exists while the other does not. However, under some 
assumptions both kinds of limits do exist and coincide. Below we gathered the 
theorems from Dal Maso [1993] describing the most important cases, usual in 
economic modelling. The subscript “p” is related to the pointwise limit.

Theorem 3. 
a.	 flow−Γ ≤ flow−p and fupp−Γ ≤ fupp−p.	  

In particular, if both the Γ-limit fΓ and the pointwise limit fp exist, then fΓ ≤ fp.
b.	 If each function fn is continuous and sequence � fn� converges uniformly4 to 

a function f, then f is continuous and f=fΓ.

c.	 If � fn� is an increasing sequence of continuous functions, then fΓ= supn∈ℕ fn.
d.	 Let X be a normed vector space. If � fn� is a sequence of equi-bounded5 

in a neighbourhood of a point x ∈ X  and convex functions, then – provided 
the sequence � fn� is convergent – fΓ= fp. 

3 In general theory, we may consider functions whose values are in the extended set of reals: 
f: X → ℝ−=ℝ ∪ {+∞}, i.e. function which may take the value +∞. A function is proper if it takes at 
least one finite value at some point x ∈ X, i.e. ∃ x ∈ X: f(x) ∈ ℝ.
4 Having (X,d) a metric space with distance function d, a sequence of functions fn: X → ℝ− is uniformly 
convergent to a function f: X → ℝ−= iff lim n→∞ sup x ∈ X d� fn(x), f(x)�=0.
5 Family (or sequence) of functions � fn�, fn: X → ℝ, is equi-bounded iff there exists a constant M>0, 
which bounds any function, i.e. for any x ∈ X:| fn(x)|<M.
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The next theorem determines when the properties of convexity and homogeneity 
are inherited by Γ-limits.

Theorem 4.  Let X be a topological vector space over the real numbers. Then:

a.	 if � fn� is a sequence of convex functions, then fupp−Γ  is a convex function. In 
particular, for a Γ-convergent sequence the Γ-limit fΓ is convex.

b.	 if � fn� is a sequence of positively homogeneous of degree k functions6, then 
both flow−Γ and fupp−Γ are positively homogeneous of degree k. In particular, 
if a sequence � fn� Γ-converges to fΓ then fΓ is positively homogeneous of 
degree k.

Remembering the obvious facts:
1.	 if a function f attains minimum at a point x0, then the function −f attains 

maximum at this point;
2.	 if a function f is increasing on a set A, then the function −f is decreasing on 

this set;
3.	 if a function f is convex on a set X, then the function −f is concave on the 

same set;
4.	 lim supn→∞ �−fn(x)�=−lim infn→∞ fn(x) and lim infn→∞ �−fn(x)�= 

−lim supn→∞ fn(x);

all the theorems above may be easily reformulated to characterize maximization 
problems in the context of Γ-convergence.

3. Modified Ramsey model
We consider now the household’s optimization problem of the Ramsey model (in 
the spirit of [Barro, Sala-i-Martin, 2004]), in which the parameters are given 
with some approximation. In contrast to Kornafel [2018] we allow some of them 
to be continuous functions of time. All the introduced functions are assumed to 
be smooth.

The households are treated as identical – their preferences are the same, they share 
the wage rate ω = ω(t), have the same rate of returns r=r(t) and the same assets 
per person. The population grows at the rate n > 0, so L(t)=L(0) ∙ ent. For simplicity 
we take L(0)=1. The total consumption is denoted by C=C(t), while consumption 

per capita is C(t)≔ C(t)
L(t) . We consider CRRA utility, i.e.:

				  
u(c)= c

1−� −1
1−� ,		  � ∈ (0,1)	 (1)

6 Having X a vector topological space, function f: X → ℝ− is positively homogeneous of degree k if for 
any t >0 and any x ∈ X it holds that f(tx)= tkf(x).
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which satisfies the usual monotonicity and concavity assumptions and meets Inada 
conditions. Therefore the households face the problem of choosing such a consump-
tion path c(t) to maximize the intertemporal utility functional (with a discount 
rate �(t)>n, ∀t ≥ 0):

			   U[c]=�
0

∞
u�c(t)�e−(�(t)−n)t dt,	 (2)

taking into account the budget constraints and c(t) ≥ 0. The budget constraints are 
given by the dynamics of household’s assets per person a(t):

			 
da=[r(t)−n] ∙ a(t)+ 𝜔(t)−c(t).
dt

	 (3)

The transversality condition is that the present value of assets is asymptotically 
nonnegative:

			      
lim a(t) ∙ e−(�

0

t
r(�)d�−nt)≥0,

t→∞ 	
(4)

Thanks to (4) and Pontryagin Maximum Principle we can derive the optimal con-
sumption path:
		        c*(t)=c(0) exp �1−

θ
��

0

t
r(�)d� −�(t)��	 (5)

For the derivation of the constraints and detailed solution of the model see [Barro, 
Sala-i-Martin, 2004, p. 88–93].

Consider now the Ramsey model with “disturbed” parameters. The rates r(t), n, 
�(t), ω(t) and parameter � are given with some approximation, which may depend 
on measurement rules. Denote those approximate values by r�(t), n�, ��(t), ω�(t) 
and �� , respectively. Assume that for any � and any t≥0, ��(t)>n� and �� ∈ (0,1).
With the increase in the accuracy of measurement, the approximate values b� 
tend to the actual value b for b ∈ {n,�} and f� tend to f for f ∈ {r, �, ω}. With 
approximate values b� and f� the household’s maximization problem is to maximize 

the functional U�[c]=�
0

∞
u��c(t)�e−(��(t)−n�)t dt, where u�(c)= c

1−�� −1
1−��

 subject 

to the constraints analogous to (3) and (4). By analogous reasoning as above, for 
each �>0 we obtain the optimal solution: the consumption per capita path

c�*(t)=c(0) exp �1−
θ�

��
0

t
r�(�)d� −��(t)��.

The next theorems give a positive answer for the basic questions that arise: whether 
or not c�* converges to c* and U�[c�*] converges to U[c*], i.e. whether or not the 
optimal path c�* approximates the actual optimal path c* and U�[c�*]≈U[c*].

First, notice that the sequence of assets allocations (a�) ⊂ C1, whose terms satisfy 
for any �>0 analogon of (3), is uniformly convergent to a(t) ∈ C1 (also thanks to 
uniform convergence of (ω�). Therefore the constraint holds in the limit. Having 
this, it is easy to justify that if r� ⇉ r, then transversality condition (4) holds in the 
limit as well.
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Theorem 5. If lim�→0n�=n and lim� →0��=�, and r� ⇉ r, �� ⇉ �, then U� converges 
to U uniformly.

Proof. The sequence of utility functions (u�) converges uniformly to the function u. 
Indeed:

|u�(c)−u(c)|=� c
1−�� −1−c1−�−1�=
1−�� 1−� 

=� 
�c1−�� −c1−��+��� ∙ c1−�−� ∙ c1−���+��−���

�≤
�1−����1−��

≤
|c1−�� −c1−�|+|�� ∙ c1−�±�� ∙ c1−�� −� ∙ c1−��|+|�−��|

≤
�1−����1−��

≤ 
�1+���|c1−�� −c1−�|+�c1−�� +1�|�−��|

.
�1−����1−��

If �� →�, then the numerator of the fraction tends to zero, so u� ⇉u. We are ready 
to prove the uniform convergence of operators U� to U:

|U�[c]−U[c]|=��
0

∞
u��c(t)�e−(��(t)−n�)t dt −�

0

∞
u�c(t)�e−(�(t)−n)t dt�≤

≤�
0

∞
|u��c(t)�e−(��(t)−n�)t ± u�c(t)�e−(��(t)−n�)t−u�c(t)�e−(�(t)−n)t| dt≤

≤�
0

∞
��u��c(t)�−u�c(t)�� ∙ e−�(��(t)−�(t))−(n�−n)�t+u�c(t)��

∙�e−�(��(t)−�(t))−(n�−n)�t−1��∙�e−(�−n)tdt

Due to the uniform convergence of (u�) and (��), with the convergence of sequ-
ences (n�) the integrand tends to zero function, so U�⇉U, what proves the theorem.

Theorem 6. The functional U is the Γ-limit of the sequence U� when � → 0.

Proof. The theorem 6 is the immediate consequence of the theorems 5 and 3b.

Corollary

If lim�→0 n�=n and lim�→0 �� =�, and r� ⇉ r, �� ⇉ �, ω� ⇉ ω, i.e. if the parameters 
of the model are given with approximations whose absolute errors tend to zero, then 
the corresponding consumption path indeed approximates the optimal “theoretical” 
consumption path and the obtained value of utility is close to actual maximum.

4. Conclusions
The aim of this paper is to study the stability of optimal solution in the general 
Ramsey-Koopmans-Cass model. We showed that if the approximation of parameters 
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in the model is such that the absolute error of approximation tends to zero, then 
the approximate solution of the model is a good approximation of actual solution 
and can be trustworthy for economic usage as it leads to “almost”-maximization of 
CRRA utility functional.
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Predictive Power Comparison of Bayesian 
Homoscedastic vs. Markov-switching 
Heteroscedastic VEC Models

Łukasz Kwiatkowski1

Abstract 

In the paper we examine the forecasting performance of Bayesian vector error 
correction models (allowing for long-term relationships between modelled varia-
bles) featuring two- and three-state Markovian breaks in the conditional covariance 
matrix to capture time-varying volatility, typically recognized in macroeconomic 
data. Predictive performance of the models is evaluated within the probabilistic 
paradigm of forecasting, with the accuracy of density forecasts measured through 
the log predictive score and Bayes factors, while also using Probability Integral 
Transform (PIT) to assess the calibration of the forecasts. In the empirical study, 
we conduct a series of ex-post prediction experiments within the so-called small 
models of monetary policy, using macroeconomic data for the US economy. The 
results indicate considerable gains in the predictive power of VEC models with 
Markov-switching heteroscedasticity (in comparison to the homoscedastic VEC 
systems), although the three-state models provide no further improvements of 
density predictions as compared to the two-state specifications.

Keywords: cointegration, regime switching, probabilistic forecasting, predictive 
score, predictive Bayes factor
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1. Introduction
For an effective forecasting of any time series by means of some statistical model 
the latter needs to capture key characteristics of the data at hand. Macroeconomic 
time series, which are of this paper’s main focus, typically display two features2: 
non-stationarity (due to the presence of stochastic trends) and conditional hetero-
scedasticity, with the latter one having already been commonly associated not only 
with financial and commodity markets. Dealing with non-stationary processes 
jointly for different variables usually requires the use of cointegration analysis, with 
the underlying vector autoregression (VAR) model in its vector error correction 
(VEC) form. Then, to account also for the other feature some time-variability needs 
to be introduced into the conditional covariance matrix of the observations, with 
typical choices including a variety of multivariate GARCH (MGARCH) or stochastic 
volatility (MSV) processes, both classes enabling continuously-valued (rather than 
discrete) changes of conditional variances and/or correlations. Recently, Wróblewska 
and Pajor [2019] examined the predictive performance of VEC models equipped 
with hybrid MSV-MGARCH structures (introduced by Osiewalski [2009], Osiewalski, 
Pajor [2009]), using macroeconomic data for the Polish economy. As evidenced in 
the cited work, extending homoscedastic VEC models with time-varying volatility 
dramatically improves their forecasting abilities model (as measured by the log 
predictive score, energy score, and also mean squared forecast error).

In this paper we shift the attention to a qualitatively different and simpler (as 
compared with MGARCH, MSV or their hybrids) approach to modelling conditional 
heteroscedasticity in cointegrated VAR/VEC systems. We conjecture that in the 
case of macroeconomic (as opposed to financial) time series it may be empirically 
‘sufficient’ (for prediction) to enable discrete rather than continuously-valued 
shifts in the multivariate volatility. Following this line of reasoning, we allow the 
conditional covariance matrix to switch between either two or three regimes 
according to a homogenous and ergodic Markov chain. 

Although the concept of Markov-switching (MS) time series models has been well-
-established and present in the literature for a long time (since the seminal paper 
by Hamilton 1989), papers devoted to forecast evaluation of MS-VEC models for 
macroeconomic data are almost exclusively limited to the point (rather than 
density) prediction [Clarida et al., 2003; Sarno et al., 2005; Psaradakis, Spagnolo, 
2005]; in the latter the authors, apart from the point forecasts, also evaluate the 
calibration of density forecasts via the Probability Integral Transform (PIT). The-
refore, following the recent shift of the forecasting paradigm from the point to 
probabilistic prediction, the aim of this study is an empirical evaluation of predictive 
densities performance of VEC models with Markov-switching heteroscedasticity 
(VEC-MSH) in comparison with homoscedastic VEC structures.

As for the statistical inference framework, we resort to the Bayesian approach to 
estimation and prediction, similarly as Wróblewska and Pajor [2019]. Admittedly, 

2 Potentially, along with some seasonal or cyclical patterns, which remain beyond the scope of this research.
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the Bayesian setting is the most suitable while dealing with latent processes (like 
stochastic volatility or hidden Markov chains). Moreover, it handles coherently 
the parameter uncertainty while producing predictive densities, which in the case 
of regime-changing models may be essential for the sake of their forecasting 
performance (as conjectured by Psaradakis and Spagnolo [2005]). The latter one 
is evaluated here through the log predictive score (LPS), which underlies the so-
-called predictive Bayes factor. We also examine PIT histograms to assess forecasts’ 
densities calibration [Geweke, Amisano, 2010; Gneiting, Raftery, 2007; Gneiting et 
al., 2007].

2. VEC models with Markov-switching 
heteroscedasticity
An n-variate VAR(k) model with Markov-switching conditional covariance matrix 
can be written in its VEC (henceforth VEC-MSH) form as:

	          
∆xt = Π∼xt−1+�Γi∆xt−i+ΦDt+ �t,    t= 1, 2, …, T,

k−1

i=1 	
(1)

			         �t|𝜓t−1, St, �∼N(0,Σt), 	 (2)

where xt is an n-variate random vector, {�t} is a vector white noise with some 
unconditional covariance matrix Σ, matrix Dt comprises deterministic variables 
(such as the constant, trend and seasonal dummies), Π∼, Γi and Φ are real-valued 
matrices of parameters, all collected in �, and 𝜓t−1 denotes the past of the process  
{xt} up to time t−1. The matrix Π∼ decomposes as Π∼ = 𝛼𝛽∼', with 𝛼 (n × r) storing 
the adjustment coefficients and 𝛽

∼
(m × r, m ≥ n) pertaining to the cointegration 

relationships, once they exist (then r < n is their number). Note that m > n only 
under the deterministic components restricted to the cointegration relationships 
(otherwise, m = n). The initial conditions x−k+1, x−k+2, …, x0 are assumed to be 
known and set as pre-sample observations; see [Wróblewska, Pajor, 2019] and the 
references therein.

The sequence {St}, where St ∈ {1, 2, …, K}, forms a K-state homogenous and 
ergodic Markov chain with (time-invariant) transition probabilities pij ≡ Pr (St = j| 
St−1 = i, �) ∈ (0, 1), �K

j=1 pij = 1 (for all i, j ∈ {1, 2, …, K}) forming the transition 
matrix P=� pij �i,j=1,2, …,K , the K(K−1) free elements of which are also stored in �. 
This latent process governs the switches between K regimes, each featured by ‘its 
own’ conditional (given 𝜓t−1 and �) covariance matrix Σt≡ΣSt of the error term 
�t (see Eq. 2). Note that in our setting we restrict the regime changes only to the 
volatility, thereby restricting the other parameters of the VEC structure to be time-
-invariant, assuming that possible long-term relationships and short-term adjust-
ments hold constant over the entire sample.
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3. Bayesian model specification, estimation and 
prediction
The methodology of Bayesian Markov-switching VEC models has been developed by 
Jochmann and Koop [2015] and we follow their approach to a large extent, with 
minor modifications to tailor our framework to the one presented in [Wróblewska, 
Pajor, 2019]3. As Bayesian modelling requires specification of the prior distributions 
for model parameters, we adopt their structure for the VEC part from the latter of 
the two above-mentioned papers, while also assuming that Σi’s (i=1, 2, …, K) follow 
the inverse Wishart distribution – the same as the one considered in [Wróblewska, 
Pajor, 2019] for Σ in the homoscedastic VEC models. For the rows of the transition 
matrix in all the models with Markov regime changes we impose the uniform (over 
the unit simplex) priors, which in the two-state models boil down to the uniform 
distributions for p11 and p22, whereas in the models with K>2 – to the Dirichlet 
(1, 1, …, 1) distributions for pi = (pi1 pi2 … piK), i=1, 2, …, K.

Bayesian estimation of the models at hand necessitates the use of MCMC methods, 
including the Gibbs sampler (in all the models) and the Forward-Filtering-Backward-
-Sampling scheme (developed by Carter and Kohn [1994]) for sampling latent 
Markov chain’s state variables [Jochmann, Koop, 2015]. Additionally, to handle 
the label switching, a problem inherent to mixture models, we use the permuta-
tion sampler designed by Frühwirth-Schnatter [2006], enforcing an inequality 
restriction for conditional variances of a selected variable across the regimes, 
Var(xti│St=1,𝜓t-1,�)>Var(xti│St=2,𝜓t-1,�)>…>Var(xti│St=K,𝜓t-1,�) for a given 
i∈ {1, 2, …, n}. 

Although requiring additional simulations at each MCMC step, prediction within 
the VEC and VEC-MSH models is quite straightforward, owing to a sequential 
structure of the likelihood.

4. Empirical analysis
The empirical analysis to follow is based on various VEC and VEC-MSH specifi-
cations of the so-called small models of monetary policy for the US economy. 
The models comprise three variables (n=3): inflation rate of consumer prices, 
unemployment rate and short-term interest rate, which relate this analysis to an 
influential paper by Primiceri [2005] (see also [Wróblewska, Pajor, 2019] for an 
analysis for Polish data). As regards the latter variable, instead of nominal rates we 
choose the so-called shadow interest rates, calculated according to Wu and Xia 
[2015], to avoid the restraint of the zero lower bound (with the nominal rates 
hovering near the bound since 2011). In this study we use quarterly, seasonally 
adjusted data, covering the period 1960:Q1–2015:Q4 (T=224 observations). 
Modelled time series are displayed in the top panel of Fig. 1.

3 Details can be provided by the author upon request.
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The predictive performance (in the sense of density forecasts) of the models under 
consideration is evaluated via series of ex-post one-quarter-ahead density predic-
tions, based on a sequence of expanding (recursive) samples, with each model being 
reestimated upon the arrival of each new observation. For the sake of the ex-post 
prediction analysis, we spare the final N=56 observations, so that the experiment 
covers 2002:Q1–2015:Q4. As can be inferred from Fig. 1, this period witnesses 
some evident regime changes (resulting in particular from sharp movements of the 
unemployment and inflation rates), with a clear regime distinction in the two-state 
model, and somehow less unequivocal assignment in the three-state case4. 

In each of the models under study we assume that the order of the underlying VAR 
process equals k=2 [Primiceri, 2005; Jochmann, Koop, 2015; Wróblewska, Pajor, 
2019]5. We consider two alternative specifications of the constant term in Eq. (1): 
either an unrestricted constant (conventionally denoted as d=3), or a constant 
restricted to the cointegration relationships (d=4). As for the number r<n of 
cointegration relations, we consider all of its possible values, i.e. r ∈ {0, 1, 2}, as well 
as the case of a stationary VAR system (i.e. r=n=3). Models with given d and r are 
labelled as VEC(d, r) and VEC(d, r)-MSH(K), with K indicating the number of 
regimes in the Markov-switching specifications. In the latter we allow for switches 
between either two (K=2) or three (K=3) states, thereby discriminating between 
either high and low volatility regimes, or also allowing for an additional, interme-
diate state. To address the problem of label switching in the VEC-MSH(K) models 
we impose an identification restriction enforce the conditional variances of the 
interest rates, Var(Int.rat et│St=i,𝜓t-1,�) (i=1, …, K) in descending order, so that 
the first regime features a higher (K=2) or the highest (K=3) volatility6.

Out of all thirteen possible specifications of the VEC-MSH models (with different 
values of d, r and K, excluding the methodologically irrelevant case of VEC(4, 3=n)-
-MSH), only for six of them a full analysis could be successfully conducted, with the 
remaining eight being therefore omitted from further considerations. We enco-
untered some numerical problems during the estimation of VEC(3, r∈{2, 3})-MSH 
(K∈{2, 3}) and VEC(4, r∈{1, 2})-MSH(3), which hindered the MCMC sampler. Al-
though no such issues have arisen in the estimation of the VEC(4, r∈{1, 2})-MSH(2) 
models, at some data points across the prediction period the zero value of predictive 
score has been obtained (probably due to its well-known sensitivity to tail events 
[Gneiting, Raftery, 2007]), thereby prohibiting calculation of the log predictive 
score and Bayes factors, utilized here for density forecasts ex-post evaluation7.

4 The posterior probabilities presented in Fig. 1 have been obtained in the best VEC-MSH(2) and VEC-
-MSH(3) models (in terms of the forecasting performance to be analyzed in further part of the section).
5 In setting the lag length (k) we follow numerous empirical studies (some of which are cited in the 
main text) in which k=2 proves the most valid choice, particularly for the US economy.
6 The results presented in this study are ‘robust’ to the choice of the variable underlying the state-
-identification restriction.
7 Other measures, such as the energy score, which are less sensitive to observations materializing in the 
tails of a predictive distribution, could be applied to assess multivariate density predictions [Gneiting, 
Raftery, 2007]. However, such scoring rules lack strict Bayesian foundations and therefore are not 
considered in this study.
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For numerical reasons, estimation of the Markov-switching models required tigh-
tening of the priors for the adjustment coefficients and the elements of the matrix B, 
related to the cointegrating vectors [Wróblewska, Pajor, 2019], with their standard 
deviations reduced from 1 (in the homoscedastic VECs) to 0.1. However, the modi-
fication does not affect the prior for the cointegration space.

Each of the predictive densities in this study is based upon 200 000 MCMC posterior 
draws, preceded by either 400 000 burn-in passes – for the first of N forecasts (to 
achieve convergence) – or 20 000 cycles for the subsequent N−1 predictions, 
with the sampler each time initiated at the final draw of the previous run. Density 
forecasts are evaluated through the log predictive score (LPS, computed with 
decimal log; the higher the value, the better), with the difference between LPS’s for 
two alternative models defining the log predictive Bayes factor (LPBF). Their values 
cumulated over the entire ex-post forecasting period are denoted as CLPS and 
CLPBF, respectively, and presented in Table 1.

As can be inferred from Table 1, the Markov-switching models substantially outrank 
the homoscedastic VECs in terms of LPS, with the cumulated predictive scores 
for VEC-MSH specifications topping by as much as ca. 11 orders of magnitude. 
On the other hand, the differences in CLPS among the VEC-MSH and, similarly, 
VEC models are fairly negligible, although models with one (or also two in the 
case of VEC) cointegration relations prove marginally better. As indicated by Fig. 2, 
this superiority of Markov-switching models hinges directly upon evident occur-
rences of volatility breaks over the prediction period (particularly 2008: Q4 through 
2010: Q1), which is quite intuitive. However, the number of regimes in the VEC-
-MSH specifications does not appear crucial here to enhancing the predictive 
power of the regime-switching models. This may result from the apparently higher 
uncertainty as to regime distinction within the three-state structures (see Fig. 2).
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Figure 1. Data and posterior probabilities of regimes 

Note: Data presented in the top panel (the LHS axis): quarterly consumer price index (3-month average), unem-
ployment rate (in the last month of quarter), and the Wu-Xia shadow federal funds rate (in the last month of quarter). 
Posterior probabilities of regimes (the RHS axis) calculated in the VEC(3,1)-MSH(2) (top) and VEC(3,1)-MSH(3) 
(bottom) models. Vertical lines demark the initial conditions (violet) and the period of predictive performance 
evaluation (red).

Source: Own elaboration based on data: inflation and unemployment rates from the Bureau of Labor Statistics 
(www.bls.gov), and shadow interest rates from https://www.frbatlanta.org/cqer/research/wu-xia-shadow-federal-
funds-rate.aspx

Table 1. Ranking of the models.

Ranking (i) d r K Model CLPSi CLPBF1i

1 3 1 3 VEC-MSH –71.487 0
2 3 1 2 VEC-MSH –71.590 0.103
3 3 0 3 VEC-MSH –71.664 0.177
4 4 0 3 VEC-MSH –71.750 0.263
5 3 0 2 VEC-MSH –71.997 0.510
6 4 0 2 VEC-MSH –72.066 0.579
7 4 2 − VEC –82.768 11.281
8 4 1 − VEC –82.875 11.388
9 3 2 − VEC –82.887 11.400
10 3 1 − VEC –82.974 11.487
11 4 0 − VEC –83.067 11.580
12 3 0 − VEC –83.180 11.693
13 3 3 − VEC –83.569 12.082

Note: Cumulated (decimal) log predictive scores (CLPS) and cumulated log predictive Bayes factors (CLPBF) in 
favour of the best model; alternative specifications of the constant include: an unrestricted constant (d=3) and the 
constant restricted to the cointegration relations (d=4); the numbers of cointegration relations include r ∈ {0,1,2}; 
r=3 indicates a stationary VAR; K∈{2,3} indicates the number of regimes.

Source: Own elaboration.
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Figure 2. Cumulative log predictive Bayes factors and the posterior probabilities of regimes 
across the forecasting period.

Note: Cumulative (decimal) log predictive Bayes factors in favour of the best VEC-MSH models against the best VEC 
model (top panel, blue and red lines; the LHS axis), along with the posterior probabilities of the regimes (black lines; 
in VEC(3,1)-MSH(2) – the top panel, and VEC(3,1)-MSH(3) – the bottom panel).

Source: Own elaboration.
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Figure 3. PIT histograms in the best VEC, VEC-MSH(2) and VEC-MSH(3) models.

Note: Horizontal lines represent 95% confidence bands around the value of 0.2 (corresponding, in our setting, to 
the ideal case of PIT uniformity)

Source: Own elaboration.

Finally, we examine the calibration of density forecasts via PIT histograms, displayed 
in Fig. 3, along with 95% (non-Bayesian) confidence bands constructed as in 
[Wróblewska, Pajor, 2019] around the value of 0.2 (representing, in our setting, 
the perfect PIT uniformity). Overall, although none of the models considered in 
these figures proves ideal for all the variables, it appears that introducing two-state 
Markovian breaks in the conditional covariance matrix of VEC models refines 
predictive densities calibration for the interest rates, with allowing for yet another, 
third regime, however, resulting in no further improvement.

5. Conclusions
In the paper we examined probabilistic predictive performance of Bayesian homo-
scedastic VEC models with their extensions allowing for either two- or three-state 
Markov-switching heteroscedasticity. To this end, the log predictive score (LPS) 
and Bayes factors, as well as Probability Integral Transform were employed, which 
are typically used for such assessments. 

In general, the results obtained within small models of monetary policy for the US 
economy indicate that enabling Markovian shifts in the conditional covariance 
matrix of the VEC models leads to a substantial improvement of density forecasts 
performance (as measured by cumulated LPS), although allowing for two regimes 
appears just enough, for no additional increase of the prediction power is observed 
upon adding yet another state. Intuitively enough, the superiority of the VEC-MSH 
specification is gained only upon volatility breaks occurrence in the forecasts ex-post 
evaluation period.

Since the results of this study indicate that allowing for some sort of time-varying 
conditional volatility in otherwise homoscedastic VEC models may improve consi-
derably their forecasting performance, it appears due for future research to extend 
our framework by including also other conditional volatility processes, such as 
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GARCH, SV or their hybrids [Osiewalski, 2009; Osiewalski, Pajor, 2009], in which 
volatility evolution is continuously-valued rather than discrete (as in the case of 
the Markov-switching models).
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MCMC Method for the IG-MSF-SBEKK Model
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Abstract 

In this paper a Markov chain Monte Carlo (MCMC) simulation tool used in the hybrid 
IG-MSF-SBEKK is described. The MCMC method is adapted to obtain a sample from 
the posterior distribution of parameters and latent variables. The Gibbs sampler 
with Metropolis-Hastings steps is used. The proposed numerical method is applied 
to estimate the hybrid IG-MSF-SBEKK model for daily exchange rate returns.
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1. Introduction 
Hybrid MSV-MGARCH models have been introduced as useful tools for modelling 
highly dimensional time series. These models formally belong to the Multivariate 
Stochastic Volatility (MSV) class, but in fact they constitute some hybrids of the 
Multivariate GARCH (MGARCH) and MSV specifications. Hybrid models can be 
parsimoniously parameterized, and simultaneously they can allow for capturing 
the time-varying conditional variances, covariances and correlations. The hybrid 
MSV-MGARCH models have been introduced by Osiewalski and Pajor [2007, 2009], 
Osiewalski [2009] and Osiewalski and Osiewalski [2016]. To make it possible to 
analyze large portfolios Osiewalski [2009] has proposed a relatively simple multi-
variate volatility model that uses one latent process and has a non-trivial covariance 
structure. In the MGARCH class a practical tool for analyzing large portfolios is the 
scalar BEKK process [Baba, Engle, Kraft, Kroner, 1989], whereby in the MSV class the 
Multiplicative Stochastic Factor (MSF) process can be considered. Finally, Osiewalski 
[2009] has proposed some LN-MSF-SBEKK hybrids. The LN-MSF-SBEKK structure 
is obtained by multiplying the SBEKK conditional covariance matrix Ht by a scalar 
random variable gt such that {ln gt} is a Gaussian AR(1) latent process with auto-
-regression parameter 𝜑. 

In [Osiewalski, Pajor, 2018; 2019] the IG-MSF-SBEKK specification has been 
proposed as a natural hybrid extension of the SBEKK process with the Student t 
conditional distribution. In the new specification the latent process {gt} is no longer 
marginally log-normal (LN), but for 𝜑=0 the variable gt has an inverted gamma (IG) 
distribution that leads to the t-SBEKK process. If 𝜑≠0 , the unconditional distri-
bution of the latent variables gt remains unknown.

In this paper a Markov chain Monte Carlo simulation tool used in the hybrid IG-MSF-
-SBEKK is described. The MCMC method is developed to obtain a sample from the 
posterior distribution of parameters and latent variables. An empirical example is 
also presented to illustrate that our sampler performs well. 

2. The IG-MSF-SBEKK model
Osiewalski and Pajor [2018; 2019] have introduced the hybrid MSV-MGARCH 
model, which is based on the assumption that the natural logarithm of the latent 
variable follows an autoregressive process with the inverted gamma innovations. 
They introduced the following specification for log-returns:

	    	    	   rt=𝛿0+rt−1Φ1+�t , t=1,…,T, 	 (1)

where rt=(r1, r2, …, rn ) is an 1 × n vector of observations, 𝛿0 is an 1 × n vector of 
parameters, Φ1 is an n × n matrix of real coefficients, and T is the length of the 
observed time series. The hybrid IG-MSF-SBEKK structure for the 1 × n disturbance 
term �t is defined by the following equality:

	 	 	 	 �t=𝜁t Ht
1/2 gt

1/2,  	 (2)
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where

		      Ht=(1−𝛽1−𝛽2 )A+𝛽1(�'t−1 �t−1)+𝛽2 Ht−1, 	 (3)

		         ln gt=𝜑 ln gt−1+ln 𝛾t, {𝛾t}~iiIG �𝜈−
2
, 𝜈−

2
�, 	 (4) 

	     {𝜁t}~iiN (0,In ), 𝜁t ⊥ 𝛾s  for all t, s ∈ {1, …, T}, 0<|𝜑|<1, 	 (5)

{𝜁t} is a Gaussian white noise sequence with the mean vector zero and the unit 
covariance matrix, Ht is a square matrix of order n, symmetric and positive definite 
for each t and having a scalar BEKK (SBEKK) form, {gt} is a scalar stochastic latent 
process, {𝛾t} is a sequence of independent positive random variables, 𝛾t is inverted 
gamma distributed with mean 𝜈−2

𝜈  for 𝜈>2, the notation 𝜁t⊥𝛾s  denotes that random 
variables 𝜁t and 𝛾s are independent.

Under (1) - (5), the conditional distribution of rt (given the past of rt and the current 
latent variable gt) is determined by the distribution of 𝜁t; rt it has the normal 
distribution with the mean vector 𝜇t=𝛿0+rt−1Φ1 and the covariance matrix 
Σt=gt Ht, which depends on both gt and the past of rt , so the distribution of rt given 
only its past is the scale mixture of N(𝜇t, gt Ht) distributions with an unknown 
marginal distribution of gt. However, for 𝜑=0 gt= 𝛾t, so the distribution of gt is 
known by assumption. Since 𝜑=0 corresponds to the t-SBEKK we may view the 
IG-MSF-SBEKK structure as a natural hybrid extension of the popular SBEKK 
specification with the conditional Student t distribution. 

For ut = ln 𝛾t we have E(ut)=ln 𝜈−
2 

−𝜓0 �𝜈−
2
� and Var(ut)=𝜓1 �𝜈−

2
�, where 𝜓0 (∙) and 

𝜓1 (∙) denote the digamma and trigamma function, respectively. Thus, {ln 𝛾t} does 

not have zero mean. Since ln gt can be expressed as ln gt= 𝜑t ln g0+∑t−1

j=0
 𝜑 j ut−j, 

then (for ln g0 constant and |𝜑|<1):

E(ln gt)= 𝜑t ln g0+
1−𝜑t

1−𝜑t �ln �𝜈−
2
�−𝜓0 �

𝜈−
2
��, Var(ln gt)=

1−𝜑2t

1−𝜑2  𝜓1�
𝜈−
2
�.

Thus, lim   E(ln gt)=
�ln�𝜈−2�−𝜓0�

𝜈−2��
t→+∞ 1−𝜑  and lim  Var(ln gt)= 

𝜓1�
𝜈−2�

t→+∞ 1−𝜑2 .

The Bayesian statistical model amounts to specifying the joint distribution of all 
observations, latent variables and parameters. The assumptions presented so far 
determine the conditional distribution of the observations and latent variables 
given the parameters. Thus, what remains to be done is to formulate the marginal 
distribution of the parameters (the prior or a priori distribution). We assume 
independence among groups of parameters and use the same prior distributions as 
Osiewalski and Pajor [2019] for the same parameters. The n(n+1) elements of 
𝛿=(𝛿0, vec(Φ1)') are assumed to be a priori independent of other parameters, with 
the N(𝜇𝛿,Σ𝛿) prior. Matrix A is a free symmetric positive definite matrix of order n, 
with an inverted Wishart prior distribution; the elements of 𝛽=( 𝛽1, 𝛽2)' are scalar 
parameters, jointly uniformly distributed over the unit simplex. As regards initial 
conditions for Ht, we take H0= h0 In and treat h0>0 as an additional parameter, 
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exponentially distributed a priori with mean 1−𝜆; 𝜑 has the uniform distribution over 

(–1, 1), and for 𝜈 we assume the gamma distribution with mean 𝜆a /𝜆� and variance 
𝜆a /𝜆

2
�. The most popular prior distributions for 𝜈 are: exponential [Geweke, 1993; 

Fernández, Steel, 1998; 1999; Osiewalski, Pajor, 2018], and uniform [Jacquier, 
Polson, Rossi, 2004]. It is worth noting that the exponential distribution is a special 
case of the gamma distribution (when 𝜆a=1).

Now we can write the full Bayesian model as: 

p(r1, …, rT, g1, …, gT, 𝛿, A, 𝛽, 𝜑, 𝜈, h0)=�T
t=1 fN

n (rt|𝜇t, gt Ht) ×

	     �T
t=1

�𝜈−2 gt
𝜑
−1�

𝜈−2
�1

gt
�
𝜈−2+1

e−
𝜈−2gt

𝜑
−1

Γ�𝜈−2�
gt × p(𝛿)p(A)p(𝛽)p(𝜑)p(𝜈)p(h0),	 (6)

where  fN
n(∙|a, B) denotes the density function of the n-variate normal distribution 

with the mean vector a and the covariance matrix B; 

p(𝛿) ∝ e− 1−2 (𝛿−𝜇𝛿)∑𝛿
−1(𝛿−𝜇𝛿)' I(0,1)(|𝜆R|max), 𝜆R is the vector of eigenvalues of the 

companion matrix, connected with the VAR form, in the paper 𝜇𝛿=0, ∑𝛿= In(n+1); 
the symbol Is(∙) denotes the indicator function of the set S;

p(A)=fIW (A|Ω, 𝜇A, n) ∝ det(A)− 𝜇A+n+1
2 e− 1−2 tr(𝛺A−1), E(A)= Ω

𝜇A–n–1  for 𝜇A>n+1; 

here Ω=nIn, 𝜇A=n, thus E(A) does not exist and A−1 has Wishart prior distribution 
with mean In; p(𝛽) ∝ I(0,1) (𝛽1+𝛽2)I(0,1)(𝛽1)I(0,1)(𝛽2);   p(𝜑) ∝ I(−1,1)(𝜑);

p(𝜈)=fG(𝜈|𝜆a, 𝜆𝜈)=
𝜆𝜈𝜆a

Γ(𝜆a)  
𝜈𝜆a −1e−𝜆𝜈𝜈I(0,+∞)(𝜈), here 𝜆a=3, 𝜆𝜈=0.1;

p(h0)=fExp(h0|𝜆)=𝜆e−𝜆h0I(0,+∞)(h0), with 𝜆=1.

3. Numerical implementation 
The posterior density function, proportional to (6), is highly dimensional and 
non-standard. To make inference about parameters and latent variables numerical 
methods are needed. We propose a Markov chain Monte Carlo method, namely the 
Gibbs algorithm, i.e. the sequential sampling from the full conditional distributions 
obtained from (6). 

3.1. The full conditional distributions of 𝜹, A, 𝜷 and h0

The conditional posterior density functions of the parameters of VAR and SBEKK 
structures are the following:

          p(𝛿|r1, …, rT, g1, …, gT, A,𝛽,𝜑,𝜈,h0) ∝ p(𝛿) ∏T
t=1 fN

n(rt|μt,gtHt),	 (7)

          p(A|r1, …, rT, g1, …, gT, 𝛿,𝛽,𝜑,𝜈,h0) ∝ p(A) ∏T
t=1 fN

n(rt|μt,gtHt),	 (8)
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     p(𝛽,h0|r1, …, rT, g1, …, gT, 𝛿, A,𝜑,𝜈) ∝ p(𝛽) p(h0) ∏T
t=1 fN

n(rt|μt,gtHt).	 (9)

Since densities of the full conditional distributions in (7) – (9) have none of any 
known closed forms, we must simulate 𝛿, A,𝛽, and h0 using the Metropolis-Hastings 
algorithm. These groups of parameters can be generated separately in three 
steps of the Gibbs sampler or in one step by blocking components. The sequential 
Metropolis-Hastings algorithm with truncated Student t distribution (with 3 degrees 
of freedom) centred at the previous values of the chain (similarly as in [Osiewalski, 
Pajor, 2009]) can be applied. The covariance matrix of the Student t distribution 
can be determined by initial draws of the algorithm.

3.2. The conditional distribution of 𝝋

It is immediate from (6) that the full conditional distribution of 𝜑 is given as follows:

 p(𝜑|r1, …, rT, g1, …, gT,𝛿, A,𝛽,𝜈,h0) ∝ e
𝜑𝜈

2 ∑T
t=1ln gt−1− 𝜈−

2
 ∑T

t=1 g
𝜑
t−1
gt  I(–1,1)(𝜑). (10)

The distribution in (10) has a non-standard form. Therefore, we use the sequential 
Metropolis-Hastings algorithm, drawing from the truncated normal distribution 
with variance 10−2, centred at the previous state of the chain.

3.3. The conditional distribution of 𝝂

The conditional distribution of 𝜈 given (r1, …, rT, g1, …, gT,𝛿, A,𝛽,𝜑,h0) has the 
following kernel density function:
 p(𝜈|r1, …, rT, g1, …, gT,𝛿, A,𝛽,𝜑,h0) ∝ p(𝜈|𝜅,T,𝜆a)=�𝜈−

2
�

T𝜈 +𝜆a−12 Γ�𝜈−
2
�

−T
e–𝜅𝜈. (11)

where 𝜅= 𝜆𝜈 – 1−
2 
∑T

t=1 ln g
𝜑
t−1
gt  + 1−

2 
∑T

t=1 g
𝜑
t−1
gt .

Although the full conditional posterior of v is non-standard, the acceptance-
-rejection method described by Geweke [1994] in the context of the trend statio-
nary model can be applied here. The sampling distribution used for candidate 
draws is exponential with probability density function: g(𝜈;𝛼)=𝛼e−𝛼𝜈. The draw 

is accepted with probability 
p(𝜈|𝜅,T,𝜆a)
c(𝛼)g(𝜈;𝛼) , where c(𝛼)=sup𝜈 

p(𝜈|𝜅,T,𝜆a)
g(𝜈;𝛼) , with 

p(𝜈|𝜅,T,𝜆a) defined in (11). As has been pointed out by Geweke [1994], the 
maximization of the acceptance probability is equivalent to the minimization of 

c(𝛼). Let Q(𝜈,𝛼)=ln
p(𝜈|𝜅,T,𝜆a)

g(𝜈;𝛼) , thus

	      Q(𝜈,𝛼)= �T𝜈�2
+ 𝜆a − 1� ln 𝜈−

2 
− T ln Γ �𝜈−

2
�+(𝛼−𝜅)𝜈 − ln 𝛼.	 (12)

The choice of 𝛼 is determined by the solution to the following problem: 
inf𝛼{sup𝜈Q(𝜈,𝛼)}.
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The partial derivative of Q(𝜈,𝛼) with respect to 𝜈 is:

		
𝜕Q(𝜈,𝛼)
𝜕𝜈  = T−

2
 �ln 𝜈−

2
 + 1 − Ψ �𝜈−

2
�� + 

𝜆a − 1
𝜈 + (𝛼−𝜅)	 (13)

 where Ψ(x)=
𝜕ln Γ(x)

𝜕x  is the digamma function. 

Note that functions f1(𝜈)=ln 𝜈−
2

 +1−Ψ �𝜈−
2
� and f2(𝜈)=

𝜆a − 1
𝜈  for 𝜆a>1 are monotone 

decreasing on the interval (0,+∞) from +∞ to 1, and from +∞ to 0, respectively. 

Additionally, since the function f(x)=x−ln x is minimized at x=1, 𝜅≥𝜆𝜈 +T/2. 

Since 𝜅>T−
2
, for small 𝛼>0 there exists a unique maximum of Q(𝜈,𝛼). On the other 

hand, the partial derivative of Q(𝜈,𝛼) with respect to 𝛼 is 
𝜕Q(𝜈,𝛼)
𝜕𝛼 =𝜈− 1−

𝛼
 , thus 

𝜕Q(𝜈,𝛼)
𝜕𝛼 =0 for 𝛼= 1−

𝜈
 . Substituting 1−

𝜈
 for 𝛼 (i.e. 𝛼= 1−

𝜈
) in (13) yields the equation: 

 T−
2
 �ln 𝜈−

2
 + 1 − Ψ �𝜈−

2
�� + 

𝜆a
𝜈 + 𝜅=0, which can be solved numerically or by using the 

following approximation: Ψ(z) ≈ ln z − 
1

2z − 
1

12z2  (see Abramowitz and Stegun, 

1968). The resulting expression is: 𝜈*≈
−(3T+6𝜆a)+√(3T+6𝜆a)2 −4T(3T+6𝜅)

6T−12𝜅 . 

Note in particular that 𝜈*>0, because of 𝜅>T−
2
. Finally, the sampling distribution 

of candidate draws of 𝜈 is exponential: g�𝜈; 1�𝜈*�= 1�𝜈* e
−1
�𝜈*𝜈.

The draw is accepted with probability: 

�𝜈−
2
�

T𝜈
�2   +𝜆a−1 �𝜈*�2 

�−�T�2
𝜈*+𝜆a−1� Γ�𝜈−

2
�
−T 

Γ�𝜈*�2 
�

T 
e(𝜅−1

�𝜈*)(𝜈*−𝜈).

3.4 The conditional distribution of g=(g1, …, gT) 

We analyze each element of the vector g in a separate Gibbs step. The conditional 
posterior density of gt, t ∈ {1, …, T}, is defined by

p( gt|r1, …, rT, g1, …, gt−1, gt+1, …, gT,𝛿, A,𝛽,𝜑,𝜈,h0) ∝ 

e−𝜈−2 gt+1

gt
𝜑

 fIG �gt� 
n−
2
+𝜈−

2
(1−𝜑), 1−

2
(rt−𝜇t)Ht

−1 (rt−𝜇t)'+𝜈−
2 

gt
𝜑
−1�, for t=1, …, T−1  (14)

p( gT|r1, …, rT, g1, …, gT−1,𝛿, A,𝛽,𝜑,𝜈,h0)=

	           fIG �gT� 
n−
2
+𝜈−

2
(1−𝜑), 1−

2
(rT−𝜇T)HT

−1 (rT−𝜇T)'+𝜈−
2 

gT
𝜑
−1�,	 (15)
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where fIG(∙|a, b) denotes the probability density function of the inverted gamma 
distribution (since called IG(a, b)) with mean a−1

b
  (for a>1) and variance  

(a−1)2 (a−2) 
b2  (for a>2).

In order to simulate latent variables, g1, …, gT−1, the independence Metropolis – 
Hastings algorithm is applied, similarly to Jacquier, Polson and Rossi [1994]. A pro-
posal distribution used to simulate gT is the inverted gamma: 

IG�n−
2
+𝜈−

2
, 1−

2 
(rt−𝜇t)HT

−1 (rT−𝜇T)'+𝜈−
2 

gT
𝜑
−1�.

An alternative proposal distribution such as the inverted gamma:

IG�n−
2
+𝜈−

2 
(1−𝜑), 1−

2 
(rT−𝜇T)HT

−1 (rT−𝜇T)'+𝜈−
2 

gT
𝜑
−1�

was found to be less efficient in practice. Drawing from the conditional distribution 
of gT  is straightforward, because it is an inverted gamma distribution. As regards 
initial conditions for {lngt}, it is assumed that ln g0 = 0.

The full conditional distributions presented in (7)–(11), (14) and (15) are used 
in the Gibbs algorithm with T+3 steps. Convergence of the induced Markov chain 
in distribution to the posterior distribution is ensured by ergodic theorems, in 
particular those pertaining to the Gibbs sampler [Gelfand, Smith, 1990; Gilks, 
Richardson, Spiegelhalter, 1996].

4. Empirical illustration 
In order to illustrate the proposed numerical method we use the growth rates of two 
exchange rates that are most important for the Polish economy, namely the zloty 
(PLN) values of the US dollar and Euro. The data covers the period from January 2, 
2007 till December 20, 2019. The first three observations (January 2, 3 and 4, 2007) 
are initial conditions. Thus, T, the length of the modelled vector time series of daily 
growth rates (logarithmic return rates) is equal to 3328. The data set was obtained 
from the website http://stooq.pl. 

Table 1. Sample characteristics

Series 
(return rates) Mean Standard 

deviation Skewness Kurtosis Correlation 
coefficient

USD/PLN 0.0087 0.9053 0.1033 9.8161
0.7832

EUR/PLN 0.0032 0.5546 0.1311 12.9013

Source: calculated by the author.
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Table 1 summarizes descriptive statistics for the logarithmic returns. Both series 
are centred about zero, with several outliers and changing volatility. The sample 
kurtosis is much higher than 3, indicating non-Normal empirical distribution for 
return rates. Both series are quite strongly positively correlated, their sample 
correlation coefficient is equal to 0.7832.

Table 2. Estimates of posterior means and standard deviations of the parameters of the 
IG-MSF-SBEKK model 

Parameter Posterior mean Standard deviation

�01 –0.011 0.011

�02 –0.011 0.006

�11 0.005 0.024

�12 0.008 0.013

�21 –0.017 0.040

�22 –0.029 0.024

a 11 0.183 0.027

a 12 0.058 0.012

a 22 0.057 0.007

� 0.296 0.107

� 9.997 1.267

�1 0.035 0.004

�2 0.948 0.005

h0 0.053 0.026

Note: Here 𝛿0=(𝛿01, 𝛿02), Φ1=[𝛿ij], A=[aij], i=1,2, j=1,2.

Source: calculated by the author.

In Table 2 estimates of the posterior means and standard deviations of the para-
meters of the IG-MSF-SBEKK model are presented. These estimates are based on 1 
million dependent draws from the posterior distribution, which is the stationary 
distribution of the Markov chain used here. The average acceptance rate in the 
Metropolis-Hastings algorithm for the latent variables is about 88%, about 77% 
for parameters of the SBEKK and VAR structures, and 18% for 𝜑. 

To informally assess the convergence of any sampler Yu and Mykland [1998] propo-
sed visual inspection of the CUSUM statistics for some scalar function of parameters 
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and latent variables (univariate quantity of interest, denoted by f(�, g), where � 
stands for the vector of parameters, g is the vector of latent variables):

		  Sn= ∑n
q=n0+1[ f(�(q),g(q))−𝜇f], n=n0+1, …, N,		  (16)

where {�(q),g(q)}N
q=1 are drawn from the posterior distribution, 𝜇f is the arithmetic 

mean of f(�, h), calculated on the basis of the last N−n0 draws; n0 is the number of 
initial discarded iterations. Commonly used functions are f(�, g)=�i and f(�, g)=gt. 
Of course, the CUSUM path plot ends at zero. But if the Markov chain converges, then 
the Sn path (against n) converges smoothly to zero. On the other hand, a smooth 
plot of the CUSUM indicates slow mixing of the chain, while a “hairy” plot indicates 
that the chain is mixing well. Brooks [1998] suggested the following measure of 
“hairiness”:

			      Dn=
n−n0−1 

1  ∑n
i

−
=

1
n0+1 di        n0+2≤n≤N	 (17)

where

di=
⎰1	 if (Si−1>Si  and Si<Si+1) or (Si−1<Si  and Si>Si+1)
⎱0	 else  

for i=n0+1, …, N−1. 

Dn can be interpreted as an average number of times f(�, g) crosses 𝜇f, and takes 
values between 0 and 1. Dn=0 indicates a totally smooth plot, whereas Dn=1 
indicates maximum “hairiness”. Under assumptions that the sequence of {di} is 
i.i.d. and distributed symmetrically about the mean, Brooks [1998] shows that Dn 

has an asymptotic normal distribution with mean 1−
2
 and variance 4(n−n0−1) 

1 . 

Thus, the convergence is diagnosed once the sequence {Dn} lies within the bounds: 
1−
2

 ± q𝛼/2 �4(n−n0−1) 
1  in approximately 100�1− 𝛼−

2
� % of N−n0 cases. The symbol 

q𝛼/2  stands for the quantile of order 𝛼/2 of the standardized normal distribution. 
Of course, the assumption that the {di} sequence is i.i.d. is not satisfied for MCMC 
sampler, but can be made approximately true by thinning of the chain [see Brooks 
1998]. 
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Figure 1. CUSUM diagnostic plots for selected parameters

Note: The solid line represents the sequence of Dn values, the dotted line represents the 99% confidence bounds.

Source: calculated by the author.
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Our chain was run for 1.5 million steps, and the first 400,000 steps were discarded. 
The chain has been thinned by a factor of 1000, because of the independence 
assumption underlying the method by Brooks [1998]. Considering only every 
1000th step reduces autocorrelation among the samples. It seems that our Markov 
chain is mixing well, because we see a lot of “hairiness” in the plots of Sn (not 
presented to save space). In Figure 1 we present the plots of Dn (a quantitative 
representation of the mixing rate of the chain) for selected two parameters. The 
mixing rates are satisfactory, since the sequence of Dn alues remains inside the 99% 
confidence bounds. For each parameter, the values of DN are between 0.477 and 

0.536. These are reasonably close to 1−
2
 .

In turn, Bauwens, Lubrano and Richard [1999] consider a standardized version 

of the CUSUM defined as follows: CSn=n−n0

1 ∑n
q=n0+1f(�(q),g(q))−𝜇f 

𝜎f 
, n=n0+1,…,N, 

𝜇f  and 𝜎f are the arithmetic mean and standard deviation of f(�, g), respectively, 
calculated on the basis of the last N−n0 draws. They point out that if the Markov 
chain converges, then the graph of CSn against n should converge smoothly to zero. 
In turn, “long and regular excursions away from zero are an indication of the 
absence of convergence” [Bauwens, Lubrano, Richard, 1999]. 
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Figure 2. Standardized CUSUM plots for selected parameters

Source: calculated by the author.

Bauwens and Lubrano [1998] observe that the sampler has converged after n(𝜖) 
draws for the estimation of f(�, h) with a relative error of 100 × 𝜖 per cent if CSn 
remains within a band of ±𝜖 for all n larger than n(𝜖). A value of 0.1 for a CUSUM 
means that the estimate of the posterior mean diverges from the final estimate by 
10 per cent in units of the final estimate of the posterior standard deviation. As can 
be seen in Figure 2, our chain has converged after about 80000 steps, since the 
standardized CUSUMs (for f(�, g)=�i) lie within the band of ±0.1 for all n larger 
than 80000. 
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5. Conclusions
The aim of this paper was to show how to estimate within the Bayesian approach the 
hybrid IG-MSF-SBEKK generalisation of the t-SBEKK model. The Bayesian analysis 
of the model relies on Gibbs sampling with Metropolis-Hastings steps. We developed 
the algorithm to estimate all the parameters and latent variables. We illustrated 
our methods through an empirical application of the growth rates of two exchange 
rates, namely the zloty (PLN) values of the US dollar and Euro. Our numerical 
method, proposed in order to obtain a sample from the posterior distribution of 
parameters and latent variables, has proven to be reliable. 
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Indebted Households’ Self-assessment of their 
Financial Situation: Evidence from Poland

Agnieszka Wałęga1

Abstract 

The standard of living of households does not only depend on their income. The 
subjective financial assessments are primarily associated with day-to-day concerns. 
Therefore, the self-assessed financial situation can provide more detailed information 
about the household’s living conditions. It is particularly crucial for indebted house-
holds, which may report difficulties with making ends meet even though their income 
is high enough to avoid such problems. The paper is based on the results of the 
questionnaire survey addressed to indebted Polish households in 2018. The ordered 
probit model was used to examine the relationship between the respondents’ self-
-assessment of their financial situation and commonly used objective measures of 
over-indebtedness. The subjective financial situation of one’s household depends on 
– among others – the level of debt and over-indebtedness risk. Regardless of the debt 
burden, the self-assessment of the financial situation among the youngest household 
cohorts is generally more accurate than among people aged 45+.
Keywords: indebtedness, standard of living, household, financial situation

JEL classification: D12, D14, I31

1 Agnieszka Wałęga, Cracow University of Economics, e-mail: agnieszka.walega@uek.krakow.pl

89

mailto:agnieszka.walega%40uek.krakow.pl?subject=


1. Introduction
Households’ financial situation is an essential determinant of consumption deci-
sions and the standard of living. It can be measured in different ways. In general, 
objective indicators are based on monetary assessment, whereas subjective ones 
are based on survey questions about the perceived financial situation of the respon-
dents2. Nevertheless, it is not possible to fully assess the financial situation of the 
household using only objective indicators. Households’ subjective opinions matter 
for financial decision-making processes. It is commonly known that the objective 
financial situation of a given household might be completely different than it is 
suggested by the results of subjective measures. Thus, it might lead to different 
financial decisions within the household [Bialowolski, Wieziak-Bialowolska, 2014]. 
It means that the subjective and objective indicators capture different information 
concerning the development of the household’s financial situation in the future. 

There are many works investigating the subjective assessment of the financial 
situation, some of which focus on satisfaction with household income [Joo, Grable, 
2004; Vera-Toscano et al., 2006; Stanovnik, Verbič, 2006; D’Ambrosio, Frick, 2007; 
Archuleta et al., 2011; Ranta, Salmela-Aro, 2018]. The research on the subjective 
assessment of the households’ income in Poland was conducted by Ulman [2006], 
Dudek [2009], Liberda et al. [2012], Dudek [2013] and Kasprzyk [2016]. 

The review of the literature suggests that the subjective financial situation is 
determined by socioeconomic factors [Vera-Toscano et al., 2006]. The researchers 
also find the dependence between the debt and well-being [Baek, DeVaney, 2004; 
Tay et al., 2017]. The household’s debts may exert a negative effect both on the 
individual’s economic well-being [Baek, DeVaney, 2004] or consumption [Kukk, 
2016]. Indebtedness may affect the individual’s well-being in different aspects e.g., 
economic, psychological [Brown et al., 2005], physical health [Clayton et al., 2015], 
and family relationships [Reading, Reynolds, 2001].

The debt burden affects subjective financial well-being and is likely to exert spill-
-over effects that influence other life domains, such as leisure, relationships, family 
life, etc. [Tay et al., 2017]. This is because financial well-being is one of the vital life 
domains.

The paper aims to explore the determinants of Polish indebted households’ self-
-assessment of their financial situation, focusing on the role of over-indebtedness. 
The analysis is based on a sample of households drawn from the primary survey of 
indebted households conducted in 2018. 

2 Household finances are economic phenomena occurring within a household that are directly related 
to the accumulation and spending of funds [Bywalec, 2009]. The financial situation of households is 
the result of these phenomena.
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2. Data and methods
Regression models can be used to identify factors influencing the assessment of 
the respondents’ financial situation. Due to the nature of the dependent variable, 
the study is based on the ordered probit model built around the latent regression 
model in the same manner as the binominal probit model. The probability that the 
variable (discrete variable) takes a particular value is specified with the use of the 
standardised normal distribution function in the following manner [Greene, 2008]:

P(Y=1)=Φ(𝛽'x+𝛽1)

P(Y=2)=Φ(𝛽'x+𝛽2)−Φ(𝛽'x+𝛽1)

P(Y=j)=1−Φ(𝛽'x+𝛽j−1)

where: Φ – the distribution function of the standard normal distribution, 𝛽 – the 
vector of estimated parameters, x – the vector of independent variables, 𝛽1…𝛽j 
– estimated constants. 

The parameters of the model are estimated using the maximum likelihood. The 
positive value of the particular 𝛽 parameter for the adequate independent variable x 
(with increasing values) increases the probability of the occurrence of the first value 
of dependent variable Y and reduces the probability of the occurrence of the last 
value j. In the case of the middle values of the dependent variable, the changes 
in the probability of the occurrence of these values are not unequivocal. It is 
impossible to determine (having the estimated parameter) in which direction the 
change of the probability goes in these classes. We can unequivocally interpret the 
parameters concerning the first and last class. At the same time, in the case of the 
whole range of the dependent variable, we can only perform simulations showing 
the development of the structure of changes in the assessment of the financial 
situation resulting from the changes of the explanatory variables. Therefore, caution 
is needed in interpreting the coefficients in this model.

The analysis of the financial situation of indebted households was based on the 
data obtained from the primary survey conducted in the first half of 2018 using the 
CATI technique. The respondents were adults aged 18 or above who had at least one 
loan commitment (either secured or unsecured). Ultimately the database contains 
1,107 individuals from all over Poland. The respondents were asked questions 
connected with their demographic characteristics, their household’s debt and 
income, and their attitudes to debt. 

The paper focuses on the influence of over-indebtedness on the assessment of the 
households’ financial situation. To identify over-indebted households, the measures 
commonly used were adopted [D’Alessio, Iezzi, 2016; Betti et al., 2007]. It was 
assumed that over-indebted households are those whose spending on total borro-
wing repayments take them below the poverty line (BPL) – (equal to 60% of the 
median income using the modified OECD scale of equivalence) and those whose 
debt-service to income indicator is 30% and more (DSTI30). Besides, the number 
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of credit agreements (4 or more – NL4) and being in arrears (more than three 
instalments – A3) were taken into account. The additional complementary indicator 
was the subjective assessment (SB) of over-indebtedness (the answer to the question 
of whether the respondent feels over-indebted).

3. Empirical results
The analysis of the financial situation was conducted using a variable of a subjective 
nature. The self-assessed financial situation was determined on the following state-
ments from the questionnaire: we lack money even for necessary daily expenses (1); 
we have enough money to satisfy only our basic needs and nothing more (2); we 
economise to satisfy at least our basic needs, and we sometimes manage to save 
some money on something more expensive (3); we have enough money to meet 
all our needs (4); we are comfortably well-to-do, we can meet all our needs, even 
the sophisticated ones (5).

The following characteristics of the households and the respondents have been 
used as explanatory variables: 
  household monthly income (up to 2000 PLN; (2000–4000] PLN; (4000–6000] 
PLN; (6000–8000] PLN; over 8000 PLN);
  level of repayments (up to 200 PLN; (200–500] PLN; (500–1000] PLN; 
(1000–2000] PLN; over 2000 PLN);
  household size (number of persons);
  gender (1 – male, 0 – female);
  education level (vocational or lower, secondary, tertiary);
  age (18–24; 25–34; 35–44; 45–54; 55–64; 65+);
  place of residence (rural, town, city); 
  over-indebtedness (five dummy variables identifying over-indebted households).

Table 1 presents the structure of the sample. Most households were made up of the 
respondents with secondary education (41.8%) or higher education (39.4%). The 
groups of respondents aged between 25, and 34 (23.5%) and 35–44 (23.7%) were 
the most numerous. Only about 6% of respondents were younger than 25 and 9.5% 
were older than 64. Approximately 54% of the respondents lived in rural areas 
(25.7%) or small towns (28.7%), and around 13.6% in big cities. Regarding the 
household size, 63.7% of the respondents’ households were rather small (three 
persons or fewer) – only 4.3% of households consisted of more than five persons. 
Taking into consideration the general economic and financial condition, in 51.6% 
of the households’ net monthly income was higher than 4000 PLN, and the income 
below 2000 PLN declared 15.4% of respondents. As far as their debts were concer-
ned, 73.1% of households spent below 1000 PLN on their monthly debt repayment, 
while 6,8% – over 2000 PLN.
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Table 1. The structure of the sample (%)

Specification Percent Specification Percent
income level of repayments

Up to 2000 PLN 15.36 Up to 200 PLN 20.86
(2000–4000] PLN 33.00 (200–500] PLN 28.05
(4000–6000] PLN 28.05 (500–1000] PLN 24.23
(6000–8000] PLN 10.60 (1000–2000] PLN 20.04

Over 8000 PLN 12.98 Over 2000 PLN 6.83
no. of persons age
1 10.84 18–24 6.14
2 25.29 25–34 23.49
3 27.55 35–44 23.67
4 24.66 45–54 21.23
5 7.41 55–64 15.99

6+ 4.25 65+ 9.49
place of residence level of education

Rural 25.66 Vocational or lower 18.79
Town 44.61 Secondary 41.82
City 29.74 Tertiary 39.39

over-indebtedness
4 or more credit  

commitments (NL4) 4.61 In arrears:  
more than 3 instalments (A3) 1.90

Debt service to income ratio:  
30% and more (DSTI30) 16.71 Self-assessment of  

over-indebtedness (SB) 17.07

Source: own calculations based on the primary survey data.

The distribution of the assessments of the households’ financial situation is negati-
vely skewed, which means that households more often chose the highest values on 
the scale (4 and 5). This situation indicates households’ positive assessment of their 
financial condition, despite their debt (Table 2).

Table 2. Self-assessment of the respondents’ financial situation by selected measures of 
over-indebtedness

Sp
ec

ifi
ca

tio
n

Total

Self- 
assessment  

of over- 
indebtedness  

(SB)

4 or more 
credit 

commitments  
(NL4)

In arrears:  
more than  

3 instalments  
(A3)

Debt service to 
income ratio:  

30% and more  
(DSTI30)

DSTI30 & SI

IN OIN IN OIN IN OIN IN OIN IN OIN
1 0.45 0.22 1.60 0.47 0.00 0.18 14.29 0.33 1.29 0.39 1.37
2 4.62 2.07 17.02 4.27 11.76 4.16 28.57 3.59 9.68 3.49 20.55
3 25.00 22.05 39.36 24.88 27.45 24.84 33.33 23.07 35.48 23.67 43.84
4 39.86 41.92 29.79 39.98 37.25 40.44 9.52 41.57 32.58 40.74 27.40
5 30.07 33.73 12.23 30.39 23.53 30.38 14.29 31.45 20.97 31.72 6.85

IN – indebted, OIN – over-indebted

Source: own calculations based on the primary survey data.
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When comparing the assessment of the financial situation of indebted and over-
-indebted households, it can be concluded that, in general, over-indebted house-
holds assess their financial situation as worse than indebted households (Table 2). 
It happens regardless of the criterion adopted for identifying households as over-
-indebted. More often, over-indebted households chose lower values on the scale, 
and even the distribution is positively skewed (in arrears: more than 3 instalments 
– A3). It stays in line with expectations and previous [Tay et al., 2017] research.

The analysis raises a question about the determinants of the subjective assessment 
of the household’s financial situation. The interesting aspect is the role of over-
-indebtedness in shaping personal well-being. To achieve this aim the econometric 
modelling was adopted. The financial situation was as a dependent variable and 
was expressed in five categories. In the first model (Model 1), the assessment of the 
financial situation was explained by variables identifying the household as over-
-indebted obtained by the measures listed in the previous section. All the proposed 
measures are dummy variables (according to the adopted criterion zero means a 
household that is indebted and one – an over-indebted household). The estimation 
proves that some parameters were statistically insignificant in determining the 
households’ financial situation (Table 3). Among other things, four constants turned 
out to be important. Their number is directly related to the number of categories of 
the dependent variable and always equals this number minus one. The statistical 
significance of the three explanatory variables (Model 1) indicates that the asses-
sment of the financial situation depends on the subjective assessment of belonging 
to the group of over-indebted households (SB). Over-indebted households assess 
their financial situation as worse than households that do not assess themselves as 
over-indebted. If the BLP indicator or A3 classifies a household as over-indebted, 
the probability of a worse assessment of its financial situations is increased. 

The estimated parameters allow for analysing the changes in the probability in 
two extreme classes (the worst financial situation (1) – we lack money even for 
necessary daily expenses, and the best financial situation (5) – we are comfortably 
well-to-do, we can meet all our needs, even the sophisticated ones) regarding 
specific characteristics. The model indicates that about 38% of indebted house-
holds – which are not classified as over-indebted ones – would assess their financial 
situation as very good. In comparison only 0.5% of the over-indebted households 
(classified as such by all the measures adopted in the study) would assess their 
situation as very good.

The following variables describing socio-economic characteristics of the respondents 
and their households were added to the previously used set of explanatory variables 
in the model (Model 2): gender, age, level of education, place of residence, number 
of people in the household, income, and debt repayments. Only age and income 
considerably affected the assessment of the financial situation. A negative sign of 
the parameter of the income variable indicates a better assessment of the financial 
situation when the income level increases. Moreover, the older the respondents, 
the probability that they would assess their financial situation as bad increases.
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Table 3. Ordered probit regression: households’ self-assessed financial situation (the 
whole sample)

Specification
Model 1 Model 2

Parameter Standard error Parameter Standard error

Constant 1 –3.302*** 0.197 –3.301*** 0.331

Constant 2 –2.098*** 0.080 –2.047*** 0.269

Constant 3 –0.819*** 0.049 –0.635*** 0.260

Constant 4 0.300*** 0.046 0.537* 0.260

SB 0.766*** 0.094 0.740* 0.101

NL4 –0.108 0.161 0.112 0.173

A3 1.022*** 0.245 0.924*** 0.264

DSTI30 0.031 0.096 0.010 0.120

BPL 0.452*** 0.078 0.168 0.103

Gender – – 0.324 0.569

Income – – –0.402*** 0.087

No. of persons – – –0.019 0.032

Age – – 0.399*** 0.050

Education – – 0.051 0.054

Place of residence – – –0.015 0.049

Level of repayments – – –0.026 0.041

Stat. Stat/Df Stat. Stat/Df

Pearson Chi-square 3779.78 0.858 3482.93 0.868

AIC 2598.68 – 2278.89 –

Log(likelihood ratio) –1290.34 – –1123.45 –

Counting R2 41.93% – 44.39% –

Note: *** – p < 0.001; ** – p < 0.05; * – p < 0.1

Source: own calculations based on the primary survey data.

A significant effect of age on the assessment of the respondents’ financial situation 
gives the grounds for the analysis of the issue in the cross-section. The increase in 
the respondents’ age is accompanied by the decrease in the percentage of responses 
identifying their financial situation as very good, and the increase in the percentage 
of responses with average (3) and bad (2) ratings. The correlation analysis (Cra-
mér’s V = 0.21, p < 0.001) indicates a weak but significant correlation between 
the examined variables.
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Figure 1. The structure of the assessment of the financial situation of households by age 
of the respondents

Source: own calculations based on the primary survey data.

Note: 1 – we lack money even for necessary daily expenses; 2 – we have enough money to satisfy only our basic 
needs and nothing more; 3 – we economise to satisfy at least our basic needs, and we sometimes manage to put 
some money aside on something more expensive; 4 – we have enough money to meet all our needs; 5 – we are 
comfortably well-to-do, we can meet all our needs, even the sophisticated ones.

Table 4. Ordered probit regression: households’ self-assessed financial situation by age 
groups

Specification
Up to 34 35–54 55+

Parameter Parameter Parameter

Constant 1 –1.5180** –2.8333*** –2.1561***

Constant 2 0.0055 –1.4443*** –0.7995*

Constant 3 1.1804** 0.1078 0.5471

Constant 4 – 1.4238*** 1.5546***

SB 0.8444*** 0.6725*** 0.6898***

NL4 –0.2329 0.2698 –0.2354

A3 –0.1192 1.2647** 1.8570**

DSTI30 –0.2238 0.1139 0.0068

BPL –0.2696 0.3384** 0.4222**

Gender 0.0668 0.0595 –0.2547*

Income –0.4683** –0.4885*** –0.2756

No. of persons 0.0006 –0.0384 –0.0902

Education 0.0081 0.1599** –0.0188
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Specification
Up to 34 35–54 55+

Parameter Parameter Parameter

Place of residence –0.1686* 0.0590 0.0462

Level of repayments 0.0972 –0.0963 –0.0439

Pearson Chi-square 901.88 1498.44 929.43

AIC 646.27 1002.30 636.95

Log(likelihood ratio) –309.14 –486.15 –303.47

Counting R2 47.47% 47.90% 38.55%

Note: *** – p < 0.001; ** – p < 0.05; * – p < 0.1

Source: own calculations based on the primary survey data.

The results of the ordered probit model according to age groups are presented in 
Table 4. The parameters reflect the influence of socio-economic characteristics on 
the assessment of the financial situation in particular age groups. The subjective 
assessment of over-indebtedness (SB) has a significant effect on the dependent 
variable. The greatest influence can be observed in the group of respondents 
below 34. The below poverty line index (BPL) and being in arrears (A3) consi-
derably affect the group of respondents above 34. The influence of both these 
variables is greater in the households of respondents aged 55+. The income in 
the households of respondents below 54 markedly influences the assessment of 
their financial situation. An increase in income reduces the probability of a “bad” 
subjective assessment of their financial situation. The place of the residence turned 
out to be significant (p < 0.1) for the respondents below 34 – the larger the place of 
residence is, the lower the probability of assessment of the bad financial situation 
is. For the respondents aged 35–54, the level of education was also significant 
(p<0.05) – the higher level of the respondents’ education was correlated with the 
higher probability of a negative assessment of their financial situation. Gender also 
played a substantial role (p < 0.1) in the assessment of the financial situation among 
the respondents aged 55+ – men less frequently assessed their financial situation 
as worse than women.

4. Conclusions
The main finding suggests that, in general, indebted households have a positive 
assessment of their financial situation. Most households have sufficient financial 
resources to meet all their needs or to be able to satisfy even sophisticated ones. 
Regardless of the measure, the subjective assessment becomes worse when a house-
hold is classified as over-indebted.
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Apart from over-indebtedness, the assessment of the financial situation is influenced 
by the household’s income and the respondents’ age. Growing income implies an 
improved assessment of the financial situation of indebted households. Similar 
observations apply to all households [Dudek, 2013]. The age also proved to be 
significant – the probability of a negative self-perception of households’ financial 
situation increases with their age. Similar conclusions were drawn by Parlińska and 
Petrych [2014], who modelled the subjective assessment of farmers’ financial 
situation. Depending on the respondents’ age (apart from being classified as over-
-indebted and the level of income), the place of residence, education level, and 
gender also exerted a noticeable effect on self-perceived financial situation.

Limitations of this study result from the measurement of the subjective assessment 
of the financial situation. Using a single item (one question) to assess financial 
satisfaction may not be the best technique [Baek, DeVaney, 2004]. Using a multi-
-item scale in further studies could provide a more accurate measure of the respon-
dents’ subjective assessment of their financial situation (well-being). A comparative 
analysis of the financial situation assessed subjectively and measured by objective 
measures seems to be a promising approach, especially that Giarda [2013] points 
out that using only subjective indicators may be not sufficiently reliable. 
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