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Quasi-Bayesian inference - pitfalls of incoherence 

Jacek Osiewalski (Cracow University of Economics) 

 

Bayesian analysis for a given statistical model: 

 probabilistic representation of initial uncertainty about all “unknowns” – not only about 

observations (available, missing, future) and latent variables, but also classical parameters 

(unknown constants) 

 Bayesian model – joint probability (density) function   𝒑(𝒚, 𝝎) =  𝒑(𝒚 | 𝝎) 𝒑(𝝎) 

 𝒑(𝒚 | 𝝎) –  distribution of available observations given the remaining quantities 

 𝒑(𝝎) – marginal (multivariate) distribution of all quantities that remain unknown after 

seeing the data (i.e., after seeing the realization of the vector 𝒚 of available observations) 

 Bayesian inference is based on simple, general rules of probability calculus        

1o conditioning – Bayes formula:  𝒑(𝝎 | 𝒚) =
𝒑(𝒚 | 𝝎) 𝒑(𝝎)

𝒑(𝒚)
=  

𝒑(𝒚 | 𝝎) 𝒑(𝝎)

∫ 𝒑(𝒚 | 𝝎) 𝒑(𝝎)
𝜴

 ∝  𝒑(𝒚 | 𝝎) 𝒑(𝝎),     

2o marginalization – deriving univariate distributions from  𝒑(𝝎 | 𝒚) 
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“Coherent inference” – the one following strict rules of probability calculus 

Quasi-Bayesian inference: 

 Bayes formula used mechanically, outside the full probabilistic context – incoherence ! 

 𝒑(𝒚 | 𝝎) = 𝒈(𝒚;  𝝎)  corresponds to some traditional statistical model 

 𝒑(𝝎) = 𝒇(𝝎; 𝒚) is specified using given 𝒚, so it cannot be the marginal distribution !!! 

 thus 𝒑(𝝎 | 𝒚) ∝  𝒈(𝒚;  𝝎) 𝒇(𝝎; 𝒚)  IS NOT the posterior in a Bayesian model with initially 

assumed 𝒑(𝒚 | 𝝎), but it can be the posterior in a completely different Bayesian model 

 question: what are the true building blocks (statistical model and prior) corresponding to 

such 𝒑(𝝎 | 𝒚)? it would be useful to know true assumptions, not only the declared ones 

 fundamental pitfall of incoherence  –  𝒑(𝝎 | 𝒚) corresponds to some statistical model and 

prior assumptions  to be discovered ! 

So-called “Empirical Bayes” (EB) is the most popular quasi-Bayesian approach, advocated in 

non-Bayesian, sampling-theory texts on inference in hierarchical multi-level statistical models 

→  Here we show hidden assumptions behind the EB inference in hierarchical models 
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SOME SIMPLE EXAMPLE FIRST (Example 1) 

Bayesian model:  𝒑(𝒚, 𝝁) =  𝒑(𝒚 | 𝝁) 𝒑(𝝁) = 𝒇𝑵
𝒏 (𝒚 | 𝝁 𝒆𝒏, 𝒄𝑰𝒏)𝒇𝑵

𝟏 (𝝁 | 𝒂, 𝒗) 

Decomposition:  𝒑(𝒚, 𝝁) =  𝒑(𝒚) 𝒑(𝝁 | 𝒚) = 𝒇𝑵
𝒏 (𝒚 | 𝒂 𝒆𝒏, 𝒄𝑰𝒏 + 𝒗 𝒆𝒏𝒆𝒏

′ )𝒇𝑵
𝟏 (𝝁 | 𝒂𝒚, 𝒗𝒚) 

where   𝒗𝒚 = (
𝒏

𝒄
+

𝟏

𝒗
)

−𝟏

,   𝒂𝒚 = (
𝒏

𝒄
+

𝟏

𝒗
)

−𝟏

(
𝒏

𝒄
𝒚̅ +

𝟏

𝒗
𝒂),   𝒚̅ =

𝟏

𝒏
𝒆𝒏

′ 𝒚 ,   𝒆𝒏 = (𝟏 𝟏 … 𝟏)′ 

Quasi-Bayesian inference: imagine a non-Bayesian statistician who agrees to use Bayes formula  

𝒑(𝝁 | 𝒚) ∝  𝒑(𝒚 | 𝝁) 𝒑(𝝁) 

but disagrees to subjectively specify 𝒂 (prior mean); instead he/she puts 𝒚̅ (sample average)    

and (informally) uses  𝒑∗(𝝁) = 𝒇𝑵
𝟏 (𝝁 | 𝒚̅, 𝒗)     and   𝒑∗(𝝁 | 𝒚) = 𝒇𝑵

𝟏 (𝝁 | 𝒚̅, (
𝒏

𝒄
+

𝟏

𝒗
)

−𝟏

)  

Is there any hidden Bayesian model (sampling + prior) formally justifying such “posterior”? 

Consider   𝒑̃(𝒚, 𝝁) =  𝒑(𝒚 | 𝝁) 𝒑∗(𝝁) = 𝒇𝑵
𝒏 (𝒚 − 𝝁 𝒆𝒏| 𝟎, 𝒄𝑰𝒏) 𝒇𝑵

𝟏 (𝝁 − 𝒚̅ | 𝟎, 𝒗)   

it decomposes into   𝒑̃(𝝁 | 𝒚) = 𝒑∗(𝝁 | 𝒚)   and   𝒑̃(𝒚) ∝ 𝐞𝐱𝐩 (−
𝟏

𝟐𝒄
𝒚′𝑴𝒚),  𝑴 = 𝑰𝒏 −

𝟏

𝒏
𝒆𝒏𝒆𝒏

′  

or  𝒑̃(𝒚 | 𝝁) = 𝒇𝑵
𝒏 (𝒚 | 𝝁 𝒆𝒏, 𝒄 (𝑰𝒏 −

𝒄

𝒏(𝒄+𝒏𝒗)
𝒆𝒏𝒆𝒏

′ ))   and   𝒑̃(𝝁) constant (!!!) 

true sampling model assumes dependence (equi-correlation); true prior is flat, improper 
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MAIN PART: Statistical models with hierarchical structure 

 

conditional distribution of observations:   𝒑(𝒚|𝜽) = 𝒈(𝒚; 𝜽),   𝒚𝝐𝒀, 𝜽𝝐𝚯; 

 

distribution of random parameters (latent variables):   𝒇𝟎(𝜽; 𝜶),   𝜶𝝐𝑨 ⊆ ℝ𝒔; 

 

joint distribution (α fixed):  

𝒑(𝒚|𝜽) 𝒇𝟎(𝜽; 𝜶) = 𝒈(𝒚; 𝜽) 𝒇𝟎(𝜽; 𝜶) = 𝒇𝟏(𝜽|𝒚; 𝜶) 𝒉(𝒚; 𝜶)     decomposition 

𝒉(𝒚; 𝜶)    marginal distribution of 𝒚 

𝒇𝟏(𝜽|𝒚; 𝜶) =
𝒈(𝒚;𝜽) 𝒇𝟎(𝜽;𝜶)

𝒉(𝒚;𝜶)
   ∝   𝒈(𝒚; 𝜽) 𝒇𝟎(𝜽; 𝜶)    conditional distribution of 𝜽 (Bayes formula) 
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SIMPLE EXAMPLE OF A HIERARCHICAL MODEL (Example 2) 

𝜽𝒊 – unobservable characteristic, randomly distributed over 𝒏 observed units (𝒊 = 𝟏, … , 𝒏),  

𝜽 = (𝜽𝟏 … 𝜽𝒏)′,   𝜽𝒊~𝒊𝒊𝑵(𝜶, 𝒅),   𝒅 > 𝟎  known; 

𝒙𝒊 = (𝒙𝒊𝟏 … 𝒙𝒊𝒎)′,   𝒙𝒊𝒋~𝒊𝒊𝑵(𝜽𝒊, 𝒄𝟎) (𝒋 = 𝟏, … , 𝒎)  – independent measurements of 𝜽𝒊 (𝒄𝟎 known) 

𝒚𝒊 =
𝟏

𝒎
𝒆𝒎

′ 𝒙𝒊 = 𝒙̅𝒊.  – sufficient statistic (for fixed 𝜽𝒊);  𝒚𝒊~𝒊𝒊𝑵(𝜽𝒊, 𝒄),    𝒄 =
𝒄𝟎

𝒎
, 𝒚 = (𝒚𝟏 … 𝒚𝒏)′ 

𝒑(𝒚|𝜽) = 𝒇𝑵
𝒏 (𝒚|𝜽, 𝒄𝑰𝒏),   𝒇𝟎(𝜽; 𝜶) = 𝒇𝑵

𝒏 (𝜽|𝜶𝒆𝒏, 𝒅𝑰𝒏)  

Decomposition of the product  𝒑(𝒚|𝜽) 𝒇𝟎(𝜽; 𝜶)  into 𝒇𝟏(𝜽|𝒚; 𝜶) 𝒉(𝒚; 𝜶), where 

 𝒉(𝒚; 𝜶) = ∫ 𝒑(𝒚|𝜽) 
 

ℝ𝒏 𝒇𝟎(𝜽; 𝜶) 𝒅𝜽 = 𝒇𝑵
𝒏 (𝒚|𝜶𝒆𝒏, (𝒄 + 𝒅)𝑰𝒏), 

𝒇𝟏(𝜽|𝒚; 𝜶) = 𝒇𝑵
𝒏 (𝜽|

𝒅−𝟏

𝒄−𝟏+𝒅−𝟏 𝜶𝒆𝒏 +
𝒄−𝟏

𝒄−𝟏+𝒅−𝟏 𝒚,
𝟏

𝒄−𝟏+𝒅−𝟏 𝑰𝒏)  (final precision = sample + prior) 

𝑬(𝜽|𝒚; 𝜶) = 𝒘 ∙ 𝜶𝒆𝒏 + (𝟏 − 𝒘) ∙ 𝒚,     𝒘 =
𝒅−𝟏

𝒄−𝟏+𝒅−𝟏 𝝐(𝟎, 𝟏)   (𝒘 = prior precision / final precision) 

𝑬(𝜽|𝒚; 𝜶) – point in 𝚯 = ℝ𝒏 lying on the line segment between (𝜶 𝜶 … 𝜶)′ and (𝒚𝟏 𝒚𝟐 … 𝒚𝒏)′ 

 

𝒇𝟏(𝜽|𝒚; 𝜶) follows Bayes Theorem for any fixed 𝜶, so then we have coherence; but how to get 𝜶? 
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Empirical Bayes (EB) 

inference on 𝜽 based on the conditional distribution 𝒇𝟏(𝜽|𝒚; 𝜶) obtained using Bayes Theorem, 

BUT for some point estimate of unknown 𝜶𝝐𝑨, e.g., using so-called type II maximum likelihood: 

𝜶̂ = 𝜶̂𝑴𝑳 = 𝐚𝐫𝐠 𝐦𝐚𝐱 𝑳(𝜶; 𝒚) = 𝐚𝐫𝐠 𝐦𝐚𝐱 𝒉(𝒚; 𝜶),   𝜶𝝐𝑨 

So EB uses  𝒑̂(𝜽|𝒚) = 𝒇𝟏(𝜽|𝒚, 𝜶̂)   ∝    𝒑(𝒚|𝜽)𝒇𝟎(𝜽; 𝜶̂), 

i.e. the “posterior” corresponding to the “prior” with hyper-parameter based on 𝒚 !!! 

 

EXAMPLE 2 (continued) 

𝑳(𝜶; 𝒚) = 𝒉(𝒚; 𝜶) = 𝒇𝑵
𝒏 (𝒚|𝜶𝒆𝒏, (𝒄 + 𝒅)𝑰𝒏) = (𝟐𝝅 ∙

𝒄+𝒅

𝒏
)

𝟏

𝟐  𝒇𝑵
𝟏 (𝜶|𝒚̅,

𝒄+𝒅

𝒏
) 𝒇𝑵

𝒏 (𝑴𝒚|𝟎, (𝒄 + 𝒅)𝑰𝒏),    

𝜶̂ = 𝜶̂𝑴𝑳 = 𝒚̅ =
𝟏

𝒏
𝒆𝒏

′ 𝒚 ,   𝑴 = 𝑰𝒏 −
𝟏

𝒏
𝒆𝒏𝒆𝒏

′ , 

𝒑̂(𝜽|𝒚) = 𝒇𝟏(𝜽|𝒚, 𝜶̂) = 𝒇𝑵
𝒏 (𝜽|𝜽̂𝑬𝑩 ,

𝟏

𝒄−𝟏+𝒅−𝟏 𝑰𝒏),   𝜽̂𝑬𝑩 =  
𝒅−𝟏

𝒄−𝟏+𝒅−𝟏 𝒚̅𝒆𝒏 +
𝒄−𝟏

𝒄−𝟏+𝒅−𝟏 𝒚 

 uncertainty about 𝜶 not taken into account 

 obvious incoherence of inferences on 𝜽 



7 
 

Bayesian hierarchical model (BHM) 

 

𝒑(𝒚, 𝝎) =  𝒑(𝒚, 𝜽, 𝜶) = 𝒑(𝒚|𝜽) 𝒑(𝜽|𝜶) 𝒑(𝜶),   𝒑(𝜶) – the prior for 𝜶𝝐𝑨 

𝝎 = (𝜽, 𝜶),  conditional independence: 𝒚 ⊥ 𝜶 | 𝜽   –  leads to 𝒑(𝒚|𝝎) = 𝒑(𝒚|𝜽) 

𝒑(𝒚|𝜽) = 𝒈(𝒚; 𝜽),   𝒑(𝜽|𝜶) = 𝒇𝟎(𝜽; 𝜶)    –  the same as in EB 

final decomposition of Bayesian model: 𝒑(𝒚, 𝜽, 𝜶) = 𝒑(𝒚) 𝒑(𝜽, 𝜶|𝒚) = 𝒑(𝒚) 𝒑(𝜶|𝒚) 𝒑(𝜽|𝒚, 𝜶) 

𝒑(𝜽|𝒚, 𝜶) =
𝒑(𝒚|𝜽) 𝒑(𝜽|𝜶)

𝒑(𝒚|𝜶)
=

𝒈(𝒚; 𝜽) 𝒇𝟎(𝜽; 𝜶)

𝒉(𝒚; 𝜶)
= 𝒇𝟏(𝜽|𝒚; 𝜶) 

𝒑(𝜶|𝒚) =
𝒑(𝒚|𝜶) 𝒑(𝜶)

𝒑(𝒚)
=

𝒉(𝒚; 𝜶) 𝒑(𝜶)

𝒑(𝒚)
 

𝒑(𝒚) = ∫ 𝒑(𝒚|𝜶

 

𝑨

)  𝒑(𝜶) 𝒅𝜶 

Remarks: 

 𝒑(𝜽|𝒚) = ∫ 𝒇𝟏(𝜽|𝒚; 𝜶) 𝒑(𝜶|𝒚) 𝒅𝜶
 

𝑨
   – uncertainty about 𝜶 is formally taken into account 

 Bayes Theorem is used twice: for latent variables (given parameters) and for parameters 
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EXAMPLE 2 (continued) – Bayesian hierarchical model with: 

𝒑(𝒚|𝜽) = 𝒇𝑵
𝒏 (𝒚|𝜽, 𝒄𝑰𝒏),   𝒑(𝜽|𝜶) = 𝒇𝑵

𝒏 (𝜽|𝜶𝒆𝒏, 𝒅𝑰𝒏),   𝒑(𝜶) = 𝒇𝑵
𝟏 (𝜶|𝒂, 𝒗) 

 𝒑(𝜽) = ∫ 𝒑(𝜽|𝜶) 𝒑(𝜶) 𝒅𝜶 = 𝒇𝑵
𝒏 (𝜽|𝒂𝒆𝒏, 𝒅𝑰𝒏 + 𝒗𝒆𝒏𝒆𝒏

′ )
+∞

−∞
 

 𝒑(𝜽|𝒚)   ∝    𝒑(𝒚|𝜽) 𝒑(𝜽) = 𝒇𝑵
𝒏 (𝒚|𝜽, 𝒄𝑰𝒏) 𝒑(𝜽) 

or, equivalently,  𝒑(𝜽|𝒚) = ∫ 𝒑(𝜽|𝒚, 𝜶) 𝒑(𝜶|𝒚) 𝒅𝜶 =  ∫ 𝒇𝟏(𝜽|𝒚; 𝜶) 𝒑(𝜶|𝒚) 𝒅𝜶
+∞

−∞
 

+∞

−∞
 

where   𝒑(𝜶|𝒚) = 𝒇𝑵
𝟏 (𝜶| (

𝒏

𝒄+𝒅
+

𝟏

𝒗
)

−𝟏

(
𝒏

𝒄+𝒅
𝒚̅ +

𝒂

𝒗
) , (

𝒏

𝒄+𝒅
+

𝟏

𝒗
)

−𝟏

) 

Finally: 

𝒑(𝜽|𝒚) = 𝒇𝑵
𝒏 (𝜽|

𝒄−𝟏

𝒄−𝟏+𝒅−𝟏 𝒚 +
𝒅−𝟏

𝒄−𝟏+𝒅−𝟏 (
𝒏

𝒄+𝒅
+

𝟏

𝒗
)

−𝟏

(
𝒏

𝒄+𝒅
𝒚̅ +

𝒂

𝒗
) ∙ 𝒆𝒏,  

𝟏

𝒄−𝟏+𝒅−𝟏 𝑰𝒏 + (
𝒏

𝒄+𝒅
+

𝟏

𝒗
)

−𝟏

(
𝒅−𝟏

𝒄−𝟏+𝒅−𝟏)
𝟐

𝒆𝒏𝒆𝒏
′ ). 

If   𝒗−𝟏 ≈ 𝟎,  then  𝒑(𝜶) ≈ 𝒄𝒐𝒏𝒔𝒕 ,   𝒑(𝜽)  ∝  𝐞𝐱𝐩 (−
𝟏

𝟐𝒅
  𝜽′𝑴𝜽) ,   𝑴 = 𝑰𝒏 −

𝟏

𝒏
𝒆𝒏𝒆𝒏

′ ,  and 

 𝒑(𝜽|𝒚) ≈ 𝒇𝑵
𝒏 (𝜽|𝜽̂𝑬𝑩,

𝟏

𝒄−𝟏+𝒅−𝟏 𝑰𝒏 +
𝒄𝟐

𝒏(𝒄+𝒅)
𝒆𝒏𝒆𝒏

′ );    
𝒄𝟐

𝒏(𝒄+𝒅)
𝒆𝒏𝒆𝒏

′   - reflects uncertainty about 𝜶! 

If also 𝒏 is large enough, then 𝒑(𝜽|𝒚) ≈ 𝒑̂(𝜽|𝒚); asymptotically, incoherence does not matter 
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Small-sample interpretation of Empirical Bayes 

 

For a given EB form of 𝒑̂(𝜽|𝒚), we seek for 𝒑̃(𝒚|𝜽) and 𝒑̃(𝜽) that lead to the Bayesian model  

𝒑̃(𝒚, 𝜽) =  𝒑̃(𝒚|𝜽)  𝒑̃(𝜽) of the form  

 

𝒑̃(𝒚, 𝜽) = 𝒌(𝒚) 𝒑(𝒚|𝜽) 𝒑(𝜽|𝜶 = 𝜶̂) = 𝒌(𝒚) 𝒈(𝒚; 𝜽) 𝒇𝟎(𝜽; 𝜶̂), 

resulting in 𝒑̂(𝜽|𝒚) as the true posterior, i.e.  

𝒑̃(𝜽|𝒚) = 𝒑̂(𝜽|𝒚)  ∝  𝒈(𝒚; 𝜽) 𝒇𝟎(𝜽; 𝜶̂). 

 

From the form of 𝒑̃(𝒚, 𝜽) we obtain the (implicit) prior    𝒑̃(𝜽) = ∫  𝒌(𝒚) 𝒈(𝒚; 𝜽) 𝒇𝟎(𝜽; 𝜶̂)
 

𝒀
𝒅𝒚 

and then the (implicit) conditional distribution of observations 

𝒑̃(𝒚|𝜽) =
𝒑̃(𝒚, 𝜽)

𝒑̃(𝜽)
= 𝒌(𝒚)

𝒈(𝒚; 𝜽) 𝒇𝟎(𝜽; 𝜶̂)

𝒑̃(𝜽)
. 

 

If both 𝒇𝟎 and 𝒌 are not constant in 𝒚, then 𝒑̃(𝒚|𝜽) ≠ 𝒑(𝒚|𝜽) = 𝒈(𝒚; 𝜽) and the true conditional 

distribution of observations is different from the initially assumed (declared) one. 
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EXAMPLE 2 (continued) 

 

𝒑̃(𝒚, 𝜽) = 𝒌(𝒚)𝒈(𝒚; 𝜽) 𝒇𝟎(𝜽; 𝜶̂) = 𝒌  𝒇𝑵
𝒏 (𝒚|𝜽, 𝒄𝑰𝒏) 𝒇𝑵

𝒏 (𝜽|𝒚̅𝒆𝒏, 𝒅𝑰𝒏)

= 𝒇𝑵
𝒏 (𝒚|𝜽, (

𝟏
𝒄 𝑰𝒏 +

𝟏
𝒅𝒏

𝒆𝒏𝒆𝒏
′ )

−𝟏

)  𝒌(𝟐𝝅)−
𝒏
𝟐 𝐞𝐱𝐩 (−

𝟏

𝟐𝒅
𝜽′𝑴𝜽) 

From 𝒑̃(𝒚, 𝜽) we easily derive: 

𝒑̃(𝜽) = 𝒌(𝟐𝝅)−
𝒏

𝟐 𝐞𝐱𝐩 (−
𝟏

𝟐𝒅
𝜽′𝑴𝜽)  – improper (only σ–finite), but informative (favors equal 𝜽𝒊)  

(for  𝒗−𝟏 ≈ 𝟎  we get  𝒑(𝜽) ≈ 𝒑̃(𝜽),  so the declared prior coincides with the true one) 

𝒑̃(𝒚|𝜽) = 𝒇𝑵
𝒏 (𝒚|𝜽, (

𝟏

𝒄
𝑰𝒏 +

𝟏

𝒅𝒏
𝒆𝒏𝒆𝒏

′ )
−𝟏

)   

– conditional distribution with equally correlated observations (instead of independent ones!!!) 

𝑽̃(𝒚|𝜽) = 𝒄 (𝑰𝒏 −
𝒄

𝒏(𝒄+𝒅)
𝒆𝒏𝒆𝒏

′ )        𝑪𝒐𝒓𝒓̃(𝒚𝒊, 𝒚𝒋|𝜽) =
𝒄

(𝒏−𝟏)𝒄+𝒏𝒅
     (𝒊 ≠ 𝒋),  

true 𝒑̃(𝒚|𝜽) is qualitatively different from declared 𝒑(𝒚|𝜽); problem disappears when 𝒏 → ∞ 
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Concluding remarks 

 From the purely Bayesian perspective, using Bayes formula with “prior” dependent on 

actual data is completely incoherent. 

 Is this, however, of any interest to a non-Bayesian statistician? Perhaps such incoherent 

quasi-Bayesian approach generates inference tools that are better in terms of sampling-

theory properties... 

 Remind that, under certain regularity conditions, Bayesian decision functions (estimators) 

are admissible (cannot be improved – in terms of risk – uniformly in the parameter space) 

and form complete classes of such decision functions. 

 Here it has been shown that incoherent, quasi-Bayesian approaches can be interpreted as 

Bayesian for other sampling models, not for the declared (assumed) ones.  

 When a quasi-Bayesian procedure is not Bayesian for the declared sampling model, it may 

produce inadmissible decision functions (within this sampling model). 

 Being coherent (i.e., being Bayesian and obeying rules of probability) prevents from such 

risks – and it does so for (almost) free... 

 

 

THANK YOU FOR YOUR ATTENTION! 


