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Bayesian analysis for a given statistical model:

probabilistic representation of initial uncertainty about all “unknowns” — not only about
observations (available, missing, future) and latent variables, but also classical parameters
(unknown constants)

Bayesian model — joint probability (density) function p(y, w) = p(y | w) p(w)

p(y | ) — distribution of available observations given the remaining quantities

p(w) — marginal (multivariate) distribution of all quantities that remain unknown after
seeing the data (i.e., after seeing the realization of the vector y of available observations)

Bayesian inference is based on simple, general rules of probability calculus
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1° conditioning — Bayes formula: p(w | y) = < p(y| w) plw),

2° marginalization — deriving univariate distributions from p(w | y)



“Coherent inference” — the one following strict rules of probability calculus

Quasi-Bayesian inference:

e Bayes formula used mechanically, outside the full probabilistic context — incoherence !

e p(y|w)=g(y; w) corresponds to some traditional statistical model

e p(w) = f(w;y) is specified using given y, so it cannot be the marginal distribution !!!

o thusp(w|y) x g(y; w) f(w;y) ISNOT the posterior in a Bayesian model with initially
assumed p(y | ), but it can be the posterior in a completely different Bayesian model

e question: what are the true building blocks (statistical model and prior) corresponding to
such p(w | y)? it would be useful to know true assumptions, not only the declared ones

e fundamental pitfall of incoherence — p(w | y) corresponds to some statistical model and

prior assumptions to be discovered !

So-called “Empirical Bayes” (EB) is the most popular quasi-Bayesian approach, advocated in

non-Bayesian, sampling-theory texts on inference in hierarchical multi-level statistical models

— Here we show hidden assumptions behind the EB inference in hierarchical models



SOME SIMPLE EXAMPLE FIRST (Example 1)

Bayesian model:  p(y,p) = p(y | p(w) = fR(y | ey cL)fy(u| a,v)
Decomposition:  p(y,p) = p) p(|y) = v lae,cl, +vee)fy(ulayv))

where vy, = (£+%)_1, a, = (2+1)_1 (§7+%a), y = %e;y, e,=(11..1)
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Quasi-Bayesian inference: imagine a non-Bayesian statistician who agrees to use Bayes formula

puly) < ply|wp(p
but disagrees to subjectively specify a (prior mean); instead he/she puts y (sample average)
n -1
and (informally) uses  p*(w) = fA(u|%v) and p'(u|y) = fauly.(5+5) )

v
Is there any hidden Bayesian model (sampling + prior) formally justifying such “posterior”?
Consider  p(y,w) = py WP (W =fy(y—peyl0.cly) fy(p—y10,v)

!

it decomposes into p(u|ly) =p"(u|y) and p(y) «< exp (—iy’My), M=1,— %enen

pe,,c (In — m ene;l)> and p(w) constant (1)

or plylmw =f'1\’z<y

true sampling model assumes dependence (equi-correlation); true prior is flat, improper



MAIN PART: Statistical models with hierarchical structure

conditional distribution of observations: p(y|0) = g(y; 0), yeY,0€0;

distribution of random parameters (latent variables): fo(0; ), aeA c R?;

joint distribution (a fixed):

p(y10) fo(0;a) = g(y;0) fo(6;ax) = f,(0]y; @) h(y; @) € decomposition

h(y;a) < marginal distribution of y

f10ly; a) = g(y’zzy’f‘;ge‘“) < g(y;0) fo(0; ) <€ conditional distribution of 8 (Bayes formula)



SIMPLE EXAMPLE OF A HIERARCHICAL MODEL (Example 2)

0; — unobservable characteristic, randomly distributed over n observed units (i = 1, ...,n),
0=(00,..0,), 0;~iiN(a,d), d> 0 known;

X; = (Xi1 .. Xim)', X;j~1IN(0;,¢o) (j = 1, ..., m) —independent measurements of 8; (co known)

y; = ie;nxi = Xx; — sufficient statistic (for fixed 0,); y;~iiN(08;,c), ¢ = C;O y=1..Vn)

p(y10) = fv(yl0,cl,), fo(6; ) = fy(Olae,, dl,)

Decomposition of the product p(y|0) f,(0; a) into f,(8|y; a) h(y; @), where

h(y; @) = [P (¥10) fo(6; ) dO = fRi(y|aey, (c + D),

d-1 -1 1 : .. .
f10|y; ) = fy (O] i it C_f+d_1y, —i,g-11n) (final precision = sample + prior)

-1

E@|ly;a)=w-ae,+(1—w)-y, w= €(0,1) (w = prior precision / final precision)

c1+d-1

E(0|y; @) — point in ®@ = R" lying on the line segment between (¢ « ...a)" and (y; y, ... ¥,)’

f1(8]y; a) follows Bayes Theorem for any fixed a, so then we have coherence; but how to get a?
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Empirical Bayes (EB)

inference on @ based on the conditional distribution f,(@|y; a) obtained using Bayes Theorem,
BUT for some point estimate of unknown aeA, e.g., using so-called type Il maximum likelihood:

a = ay; = arg max L(a;y) = arg max h(y;a), aeA

SoEBuses p(0ly) = f1(8ly,a) x p(y|0)f,(0;a),

I.e. the “posterior” corresponding to the “prior” with hyper-parameter based on y I!!

EXAMPLE 2 (continued)

n c+d 1 1 — c+d n
L@ y) = h(y; @) = filae,, €+ DL) = -9 £ (af5, %) M0, (c + DI,
~ ~ —_ 1 / 1 I}
a=ay, =y =_eyy, M =1, ——eyey,

1 d—l -1

p(Oly) = f1(0ly, @) = f3 (8165, —In), Ors = —TgiVen+ gV

e uncertainty about a not taken into account

e obvious incoherence of inferences on @



Bayesian hierarchical model (BHM)

p(y,w)=p(6,a)=pyl0) p(6la) p(a), p(a)—the prior for aeA
w = (0,a), conditional independence: y L a |0 - leadsto p(y|w) = p(y|0)
p(y|@) = g(y;0), p(Bla) = fo(0;x) - thesameasin EB
final decomposition of Bayesian model: p(y,0,a) = p(y) p(0,aly) = p(y) p(aly) p(0|y, @)
_pQyl0)pBla) _g(y;6) fo(6; @)

p(9|)’; a) p(yla) h(y, a) = f1(9|y, a)
D(aly) = PYDP@ _ b @) p(a)
46)) 462

p(y) = fp(yla) p(a) da

A

Remarks:

e p(Oly) = fA f10ly; a) p(a|y) da - uncertainty about a is formally taken into account

e Bayes Theorem is used twice: for latent variables (given parameters) and for parameters



EXAMPLE 2 (continued) — Bayesian hierarchical model with:
p(¥16) = fR (16, cl), p(Bla) = fy(Blae,, dl,), p(a)=fy(alav)

= p(0) = [*7p(6la) pa) da = f(6ae,, dI,, + ve,el,)
* p(@ly) < p(yl0)p(0) =fylo,cl,) p(0)
or, equivalently, p(8ly) = [~ p(6ly, &) p(aly) da = [*~ f1(6ly; @) p(aly) da
1 -1 n _ a n 1 -1
where  p(aly) = fi(al (Z5+3) (G57+2).(Z5+3) )

c+d c+d v c+d
Finally:
—_ fn ¢! d! n E
p(BIy) = fn(0| c1+d-1 y+ cl+d-1 (c+d + ) (c+d v)
1

— 1 +( +)_1( 4 )ee’)
cl4g-1 71 ct+d ~lyd- nsn

If v=1 =0, then p(a) = const, p(@) x exp (—i B’MB), M=1, —%ene;l, and

—~ 2 2 .
p(B|y) ~ f2(0|0zp, #In + (c+d)e el); n(cc+d) e el - reflects uncertainty about a!

If also n is large enough, then p(8|y) = p(0|y); asymptotically, incoherence does not matter




Small-sample interpretation of Empirical Bayes

For a given EB form of p(8|y), we seek for p(y|0) and p(0) that lead to the Bayesian model
p(y,8) = p(y|6) P(6) of the form

p(y,0) =k(y) p(y|0) p(0la=a) = k(y) g(y;0) fo(6; @),

resulting in p(0|y) as the true posterior, i.e.
p0ly) =p(0ly) « g(y;0) fo(6; ).

From the form of p(y, ) we obtain the (implicit) prior p(0) = fY k(y) g(y;0) fo(6;a) dy

and then the (implicit) conditional distribution of observations

. Py, 6) g;0) fo(6; @)
PO =5%@ T F@

If both f, and k are not constant in y, then p(y|0) + p(y|8) = g(y; @) and the true conditional

distribution of observations is different from the initially assumed (declared) one.



EXAMPLE 2 (continued)

p(y,0) =k(y)g(y;0) fo(0;@) = k fy(y10, cI,,) fy(Blye,, dI},)

= 13 (y|6. (21 +ge e’)_l k(2m) "% exp(— — 6'MO)
N Yy|0O, cn dn"n"n p 2d

From p(y, 8) we easily derive:

p(0) = k(Zn)_g exp (— i B’MB) — improper (only e-finite), but informative (favors equal ;)

(for v1 ~ 0 we get p(0) ~ P(0), so the declared prior coincides with the true one)

~ 1 1 A\ 71
p(yle) =f11\ll<y‘01(zln+aenen) )
— conditional distribution with equally correlated observations (instead of independent ones!!!)

c

V(J’|9)=C(1n—ﬁeneh) = Corr(yy¥0) = g (A #0),

true p(y|0) is qualitatively different from declared p(y|0); problem disappears when n — o
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Concluding remarks

From the purely Bayesian perspective, using Bayes formula with “prior” dependent on
actual data is completely incoherent.

Is this, however, of any interest to a non-Bayesian statistician? Perhaps such incoherent
guasi-Bayesian approach generates inference tools that are better in terms of sampling-
theory properties...

Remind that, under certain regularity conditions, Bayesian decision functions (estimators)
are admissible (cannot be improved — in terms of risk — uniformly in the parameter space)
and form complete classes of such decision functions.

Here it has been shown that incoherent, quasi-Bayesian approaches can be interpreted as
Bayesian for other sampling models, not for the declared (assumed) ones.

When a quasi-Bayesian procedure is not Bayesian for the declared sampling model, it may
produce inadmissible decision functions (within this sampling model).

Being coherent (i.e., being Bayesian and obeying rules of probability) prevents from such
risks — and it does so for (almost) free...

THANK YOU FOR YOUR ATTENTION!
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