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Quasi-Bayesian inference - pitfalls of incoherence 

Jacek Osiewalski (Cracow University of Economics) 

 

Bayesian analysis for a given statistical model: 

 probabilistic representation of initial uncertainty about all “unknowns” – not only about 

observations (available, missing, future) and latent variables, but also classical parameters 

(unknown constants) 

 Bayesian model – joint probability (density) function   𝒑(𝒚, 𝝎) =  𝒑(𝒚 | 𝝎) 𝒑(𝝎) 

 𝒑(𝒚 | 𝝎) –  distribution of available observations given the remaining quantities 

 𝒑(𝝎) – marginal (multivariate) distribution of all quantities that remain unknown after 

seeing the data (i.e., after seeing the realization of the vector 𝒚 of available observations) 

 Bayesian inference is based on simple, general rules of probability calculus        

1o conditioning – Bayes formula:  𝒑(𝝎 | 𝒚) =
𝒑(𝒚 | 𝝎) 𝒑(𝝎)

𝒑(𝒚)
=  

𝒑(𝒚 | 𝝎) 𝒑(𝝎)

∫ 𝒑(𝒚 | 𝝎) 𝒑(𝝎)
𝜴

 ∝  𝒑(𝒚 | 𝝎) 𝒑(𝝎),     

2o marginalization – deriving univariate distributions from  𝒑(𝝎 | 𝒚) 
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“Coherent inference” – the one following strict rules of probability calculus 

Quasi-Bayesian inference: 

 Bayes formula used mechanically, outside the full probabilistic context – incoherence ! 

 𝒑(𝒚 | 𝝎) = 𝒈(𝒚;  𝝎)  corresponds to some traditional statistical model 

 𝒑(𝝎) = 𝒇(𝝎; 𝒚) is specified using given 𝒚, so it cannot be the marginal distribution !!! 

 thus 𝒑(𝝎 | 𝒚) ∝  𝒈(𝒚;  𝝎) 𝒇(𝝎; 𝒚)  IS NOT the posterior in a Bayesian model with initially 

assumed 𝒑(𝒚 | 𝝎), but it can be the posterior in a completely different Bayesian model 

 question: what are the true building blocks (statistical model and prior) corresponding to 

such 𝒑(𝝎 | 𝒚)? it would be useful to know true assumptions, not only the declared ones 

 fundamental pitfall of incoherence  –  𝒑(𝝎 | 𝒚) corresponds to some statistical model and 

prior assumptions  to be discovered ! 

So-called “Empirical Bayes” (EB) is the most popular quasi-Bayesian approach, advocated in 

non-Bayesian, sampling-theory texts on inference in hierarchical multi-level statistical models 

→  Here we show hidden assumptions behind the EB inference in hierarchical models 
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SOME SIMPLE EXAMPLE FIRST (Example 1) 

Bayesian model:  𝒑(𝒚, 𝝁) =  𝒑(𝒚 | 𝝁) 𝒑(𝝁) = 𝒇𝑵
𝒏 (𝒚 | 𝝁 𝒆𝒏, 𝒄𝑰𝒏)𝒇𝑵

𝟏 (𝝁 | 𝒂, 𝒗) 

Decomposition:  𝒑(𝒚, 𝝁) =  𝒑(𝒚) 𝒑(𝝁 | 𝒚) = 𝒇𝑵
𝒏 (𝒚 | 𝒂 𝒆𝒏, 𝒄𝑰𝒏 + 𝒗 𝒆𝒏𝒆𝒏

′ )𝒇𝑵
𝟏 (𝝁 | 𝒂𝒚, 𝒗𝒚) 

where   𝒗𝒚 = (
𝒏

𝒄
+

𝟏

𝒗
)

−𝟏

,   𝒂𝒚 = (
𝒏

𝒄
+

𝟏

𝒗
)

−𝟏

(
𝒏

𝒄
�̅� +

𝟏

𝒗
𝒂),   �̅� =

𝟏

𝒏
𝒆𝒏

′ 𝒚 ,   𝒆𝒏 = (𝟏 𝟏 … 𝟏)′ 

Quasi-Bayesian inference: imagine a non-Bayesian statistician who agrees to use Bayes formula  

𝒑(𝝁 | 𝒚) ∝  𝒑(𝒚 | 𝝁) 𝒑(𝝁) 

but disagrees to subjectively specify 𝒂 (prior mean); instead he/she puts �̅� (sample average)    

and (informally) uses  𝒑∗(𝝁) = 𝒇𝑵
𝟏 (𝝁 | �̅�, 𝒗)     and   𝒑∗(𝝁 | 𝒚) = 𝒇𝑵

𝟏 (𝝁 | �̅�, (
𝒏

𝒄
+

𝟏

𝒗
)

−𝟏

)  

Is there any hidden Bayesian model (sampling + prior) formally justifying such “posterior”? 

Consider   �̃�(𝒚, 𝝁) =  𝒑(𝒚 | 𝝁) 𝒑∗(𝝁) = 𝒇𝑵
𝒏 (𝒚 − 𝝁 𝒆𝒏| 𝟎, 𝒄𝑰𝒏) 𝒇𝑵

𝟏 (𝝁 − �̅� | 𝟎, 𝒗)   

it decomposes into   �̃�(𝝁 | 𝒚) = 𝒑∗(𝝁 | 𝒚)   and   �̃�(𝒚) ∝ 𝐞𝐱𝐩 (−
𝟏

𝟐𝒄
𝒚′𝑴𝒚),  𝑴 = 𝑰𝒏 −

𝟏

𝒏
𝒆𝒏𝒆𝒏

′  

or  �̃�(𝒚 | 𝝁) = 𝒇𝑵
𝒏 (𝒚 | 𝝁 𝒆𝒏, 𝒄 (𝑰𝒏 −

𝒄

𝒏(𝒄+𝒏𝒗)
𝒆𝒏𝒆𝒏

′ ))   and   �̃�(𝝁) constant (!!!) 

true sampling model assumes dependence (equi-correlation); true prior is flat, improper 
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MAIN PART: Statistical models with hierarchical structure 

 

conditional distribution of observations:   𝒑(𝒚|𝜽) = 𝒈(𝒚; 𝜽),   𝒚𝝐𝒀, 𝜽𝝐𝚯; 

 

distribution of random parameters (latent variables):   𝒇𝟎(𝜽; 𝜶),   𝜶𝝐𝑨 ⊆ ℝ𝒔; 

 

joint distribution (α fixed):  

𝒑(𝒚|𝜽) 𝒇𝟎(𝜽; 𝜶) = 𝒈(𝒚; 𝜽) 𝒇𝟎(𝜽; 𝜶) = 𝒇𝟏(𝜽|𝒚; 𝜶) 𝒉(𝒚; 𝜶)     decomposition 

𝒉(𝒚; 𝜶)    marginal distribution of 𝒚 

𝒇𝟏(𝜽|𝒚; 𝜶) =
𝒈(𝒚;𝜽) 𝒇𝟎(𝜽;𝜶)

𝒉(𝒚;𝜶)
   ∝   𝒈(𝒚; 𝜽) 𝒇𝟎(𝜽; 𝜶)    conditional distribution of 𝜽 (Bayes formula) 
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SIMPLE EXAMPLE OF A HIERARCHICAL MODEL (Example 2) 

𝜽𝒊 – unobservable characteristic, randomly distributed over 𝒏 observed units (𝒊 = 𝟏, … , 𝒏),  

𝜽 = (𝜽𝟏 … 𝜽𝒏)′,   𝜽𝒊~𝒊𝒊𝑵(𝜶, 𝒅),   𝒅 > 𝟎  known; 

𝒙𝒊 = (𝒙𝒊𝟏 … 𝒙𝒊𝒎)′,   𝒙𝒊𝒋~𝒊𝒊𝑵(𝜽𝒊, 𝒄𝟎) (𝒋 = 𝟏, … , 𝒎)  – independent measurements of 𝜽𝒊 (𝒄𝟎 known) 

𝒚𝒊 =
𝟏

𝒎
𝒆𝒎

′ 𝒙𝒊 = �̅�𝒊.  – sufficient statistic (for fixed 𝜽𝒊);  𝒚𝒊~𝒊𝒊𝑵(𝜽𝒊, 𝒄),    𝒄 =
𝒄𝟎

𝒎
, 𝒚 = (𝒚𝟏 … 𝒚𝒏)′ 

𝒑(𝒚|𝜽) = 𝒇𝑵
𝒏 (𝒚|𝜽, 𝒄𝑰𝒏),   𝒇𝟎(𝜽; 𝜶) = 𝒇𝑵

𝒏 (𝜽|𝜶𝒆𝒏, 𝒅𝑰𝒏)  

Decomposition of the product  𝒑(𝒚|𝜽) 𝒇𝟎(𝜽; 𝜶)  into 𝒇𝟏(𝜽|𝒚; 𝜶) 𝒉(𝒚; 𝜶), where 

 𝒉(𝒚; 𝜶) = ∫ 𝒑(𝒚|𝜽) 
 

ℝ𝒏 𝒇𝟎(𝜽; 𝜶) 𝒅𝜽 = 𝒇𝑵
𝒏 (𝒚|𝜶𝒆𝒏, (𝒄 + 𝒅)𝑰𝒏), 

𝒇𝟏(𝜽|𝒚; 𝜶) = 𝒇𝑵
𝒏 (𝜽|

𝒅−𝟏

𝒄−𝟏+𝒅−𝟏 𝜶𝒆𝒏 +
𝒄−𝟏

𝒄−𝟏+𝒅−𝟏 𝒚,
𝟏

𝒄−𝟏+𝒅−𝟏 𝑰𝒏)  (final precision = sample + prior) 

𝑬(𝜽|𝒚; 𝜶) = 𝒘 ∙ 𝜶𝒆𝒏 + (𝟏 − 𝒘) ∙ 𝒚,     𝒘 =
𝒅−𝟏

𝒄−𝟏+𝒅−𝟏 𝝐(𝟎, 𝟏)   (𝒘 = prior precision / final precision) 

𝑬(𝜽|𝒚; 𝜶) – point in 𝚯 = ℝ𝒏 lying on the line segment between (𝜶 𝜶 … 𝜶)′ and (𝒚𝟏 𝒚𝟐 … 𝒚𝒏)′ 

 

𝒇𝟏(𝜽|𝒚; 𝜶) follows Bayes Theorem for any fixed 𝜶, so then we have coherence; but how to get 𝜶? 
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Empirical Bayes (EB) 

inference on 𝜽 based on the conditional distribution 𝒇𝟏(𝜽|𝒚; 𝜶) obtained using Bayes Theorem, 

BUT for some point estimate of unknown 𝜶𝝐𝑨, e.g., using so-called type II maximum likelihood: 

�̂� = �̂�𝑴𝑳 = 𝐚𝐫𝐠 𝐦𝐚𝐱 𝑳(𝜶; 𝒚) = 𝐚𝐫𝐠 𝐦𝐚𝐱 𝒉(𝒚; 𝜶),   𝜶𝝐𝑨 

So EB uses  �̂�(𝜽|𝒚) = 𝒇𝟏(𝜽|𝒚, �̂�)   ∝    𝒑(𝒚|𝜽)𝒇𝟎(𝜽; �̂�), 

i.e. the “posterior” corresponding to the “prior” with hyper-parameter based on 𝒚 !!! 

 

EXAMPLE 2 (continued) 

𝑳(𝜶; 𝒚) = 𝒉(𝒚; 𝜶) = 𝒇𝑵
𝒏 (𝒚|𝜶𝒆𝒏, (𝒄 + 𝒅)𝑰𝒏) = (𝟐𝝅 ∙

𝒄+𝒅

𝒏
)

𝟏

𝟐  𝒇𝑵
𝟏 (𝜶|�̅�,

𝒄+𝒅

𝒏
) 𝒇𝑵

𝒏 (𝑴𝒚|𝟎, (𝒄 + 𝒅)𝑰𝒏),    

�̂� = �̂�𝑴𝑳 = �̅� =
𝟏

𝒏
𝒆𝒏

′ 𝒚 ,   𝑴 = 𝑰𝒏 −
𝟏

𝒏
𝒆𝒏𝒆𝒏

′ , 

�̂�(𝜽|𝒚) = 𝒇𝟏(𝜽|𝒚, �̂�) = 𝒇𝑵
𝒏 (𝜽|�̂�𝑬𝑩 ,

𝟏

𝒄−𝟏+𝒅−𝟏 𝑰𝒏),   �̂�𝑬𝑩 =  
𝒅−𝟏

𝒄−𝟏+𝒅−𝟏 �̅�𝒆𝒏 +
𝒄−𝟏

𝒄−𝟏+𝒅−𝟏 𝒚 

 uncertainty about 𝜶 not taken into account 

 obvious incoherence of inferences on 𝜽 
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Bayesian hierarchical model (BHM) 

 

𝒑(𝒚, 𝝎) =  𝒑(𝒚, 𝜽, 𝜶) = 𝒑(𝒚|𝜽) 𝒑(𝜽|𝜶) 𝒑(𝜶),   𝒑(𝜶) – the prior for 𝜶𝝐𝑨 

𝝎 = (𝜽, 𝜶),  conditional independence: 𝒚 ⊥ 𝜶 | 𝜽   –  leads to 𝒑(𝒚|𝝎) = 𝒑(𝒚|𝜽) 

𝒑(𝒚|𝜽) = 𝒈(𝒚; 𝜽),   𝒑(𝜽|𝜶) = 𝒇𝟎(𝜽; 𝜶)    –  the same as in EB 

final decomposition of Bayesian model: 𝒑(𝒚, 𝜽, 𝜶) = 𝒑(𝒚) 𝒑(𝜽, 𝜶|𝒚) = 𝒑(𝒚) 𝒑(𝜶|𝒚) 𝒑(𝜽|𝒚, 𝜶) 

𝒑(𝜽|𝒚, 𝜶) =
𝒑(𝒚|𝜽) 𝒑(𝜽|𝜶)

𝒑(𝒚|𝜶)
=

𝒈(𝒚; 𝜽) 𝒇𝟎(𝜽; 𝜶)

𝒉(𝒚; 𝜶)
= 𝒇𝟏(𝜽|𝒚; 𝜶) 

𝒑(𝜶|𝒚) =
𝒑(𝒚|𝜶) 𝒑(𝜶)

𝒑(𝒚)
=

𝒉(𝒚; 𝜶) 𝒑(𝜶)

𝒑(𝒚)
 

𝒑(𝒚) = ∫ 𝒑(𝒚|𝜶

 

𝑨

)  𝒑(𝜶) 𝒅𝜶 

Remarks: 

 𝒑(𝜽|𝒚) = ∫ 𝒇𝟏(𝜽|𝒚; 𝜶) 𝒑(𝜶|𝒚) 𝒅𝜶
 

𝑨
   – uncertainty about 𝜶 is formally taken into account 

 Bayes Theorem is used twice: for latent variables (given parameters) and for parameters 
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EXAMPLE 2 (continued) – Bayesian hierarchical model with: 

𝒑(𝒚|𝜽) = 𝒇𝑵
𝒏 (𝒚|𝜽, 𝒄𝑰𝒏),   𝒑(𝜽|𝜶) = 𝒇𝑵

𝒏 (𝜽|𝜶𝒆𝒏, 𝒅𝑰𝒏),   𝒑(𝜶) = 𝒇𝑵
𝟏 (𝜶|𝒂, 𝒗) 

 𝒑(𝜽) = ∫ 𝒑(𝜽|𝜶) 𝒑(𝜶) 𝒅𝜶 = 𝒇𝑵
𝒏 (𝜽|𝒂𝒆𝒏, 𝒅𝑰𝒏 + 𝒗𝒆𝒏𝒆𝒏

′ )
+∞

−∞
 

 𝒑(𝜽|𝒚)   ∝    𝒑(𝒚|𝜽) 𝒑(𝜽) = 𝒇𝑵
𝒏 (𝒚|𝜽, 𝒄𝑰𝒏) 𝒑(𝜽) 

or, equivalently,  𝒑(𝜽|𝒚) = ∫ 𝒑(𝜽|𝒚, 𝜶) 𝒑(𝜶|𝒚) 𝒅𝜶 =  ∫ 𝒇𝟏(𝜽|𝒚; 𝜶) 𝒑(𝜶|𝒚) 𝒅𝜶
+∞

−∞
 

+∞

−∞
 

where   𝒑(𝜶|𝒚) = 𝒇𝑵
𝟏 (𝜶| (

𝒏

𝒄+𝒅
+

𝟏

𝒗
)

−𝟏

(
𝒏

𝒄+𝒅
�̅� +

𝒂

𝒗
) , (

𝒏

𝒄+𝒅
+

𝟏

𝒗
)

−𝟏

) 

Finally: 

𝒑(𝜽|𝒚) = 𝒇𝑵
𝒏 (𝜽|

𝒄−𝟏

𝒄−𝟏+𝒅−𝟏 𝒚 +
𝒅−𝟏

𝒄−𝟏+𝒅−𝟏 (
𝒏

𝒄+𝒅
+

𝟏

𝒗
)

−𝟏

(
𝒏

𝒄+𝒅
�̅� +

𝒂

𝒗
) ∙ 𝒆𝒏,  

𝟏

𝒄−𝟏+𝒅−𝟏 𝑰𝒏 + (
𝒏

𝒄+𝒅
+

𝟏

𝒗
)

−𝟏

(
𝒅−𝟏

𝒄−𝟏+𝒅−𝟏)
𝟐

𝒆𝒏𝒆𝒏
′ ). 

If   𝒗−𝟏 ≈ 𝟎,  then  𝒑(𝜶) ≈ 𝒄𝒐𝒏𝒔𝒕 ,   𝒑(𝜽)  ∝  𝐞𝐱𝐩 (−
𝟏

𝟐𝒅
  𝜽′𝑴𝜽) ,   𝑴 = 𝑰𝒏 −

𝟏

𝒏
𝒆𝒏𝒆𝒏

′ ,  and 

 𝒑(𝜽|𝒚) ≈ 𝒇𝑵
𝒏 (𝜽|�̂�𝑬𝑩,

𝟏

𝒄−𝟏+𝒅−𝟏 𝑰𝒏 +
𝒄𝟐

𝒏(𝒄+𝒅)
𝒆𝒏𝒆𝒏

′ );    
𝒄𝟐

𝒏(𝒄+𝒅)
𝒆𝒏𝒆𝒏

′   - reflects uncertainty about 𝜶! 

If also 𝒏 is large enough, then 𝒑(𝜽|𝒚) ≈ �̂�(𝜽|𝒚); asymptotically, incoherence does not matter 
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Small-sample interpretation of Empirical Bayes 

 

For a given EB form of �̂�(𝜽|𝒚), we seek for �̃�(𝒚|𝜽) and �̃�(𝜽) that lead to the Bayesian model  

�̃�(𝒚, 𝜽) =  �̃�(𝒚|𝜽)  �̃�(𝜽) of the form  

 

�̃�(𝒚, 𝜽) = 𝒌(𝒚) 𝒑(𝒚|𝜽) 𝒑(𝜽|𝜶 = �̂�) = 𝒌(𝒚) 𝒈(𝒚; 𝜽) 𝒇𝟎(𝜽; �̂�), 

resulting in �̂�(𝜽|𝒚) as the true posterior, i.e.  

�̃�(𝜽|𝒚) = �̂�(𝜽|𝒚)  ∝  𝒈(𝒚; 𝜽) 𝒇𝟎(𝜽; �̂�). 

 

From the form of �̃�(𝒚, 𝜽) we obtain the (implicit) prior    �̃�(𝜽) = ∫  𝒌(𝒚) 𝒈(𝒚; 𝜽) 𝒇𝟎(𝜽; �̂�)
 

𝒀
𝒅𝒚 

and then the (implicit) conditional distribution of observations 

�̃�(𝒚|𝜽) =
�̃�(𝒚, 𝜽)

�̃�(𝜽)
= 𝒌(𝒚)

𝒈(𝒚; 𝜽) 𝒇𝟎(𝜽; �̂�)

�̃�(𝜽)
. 

 

If both 𝒇𝟎 and 𝒌 are not constant in 𝒚, then �̃�(𝒚|𝜽) ≠ 𝒑(𝒚|𝜽) = 𝒈(𝒚; 𝜽) and the true conditional 

distribution of observations is different from the initially assumed (declared) one. 
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EXAMPLE 2 (continued) 

 

�̃�(𝒚, 𝜽) = 𝒌(𝒚)𝒈(𝒚; 𝜽) 𝒇𝟎(𝜽; �̂�) = 𝒌  𝒇𝑵
𝒏 (𝒚|𝜽, 𝒄𝑰𝒏) 𝒇𝑵

𝒏 (𝜽|�̅�𝒆𝒏, 𝒅𝑰𝒏)

= 𝒇𝑵
𝒏 (𝒚|𝜽, (

𝟏
𝒄 𝑰𝒏 +

𝟏
𝒅𝒏

𝒆𝒏𝒆𝒏
′ )

−𝟏

)  𝒌(𝟐𝝅)−
𝒏
𝟐 𝐞𝐱𝐩 (−

𝟏

𝟐𝒅
𝜽′𝑴𝜽) 

From �̃�(𝒚, 𝜽) we easily derive: 

�̃�(𝜽) = 𝒌(𝟐𝝅)−
𝒏

𝟐 𝐞𝐱𝐩 (−
𝟏

𝟐𝒅
𝜽′𝑴𝜽)  – improper (only σ–finite), but informative (favors equal 𝜽𝒊)  

(for  𝒗−𝟏 ≈ 𝟎  we get  𝒑(𝜽) ≈ �̃�(𝜽),  so the declared prior coincides with the true one) 

�̃�(𝒚|𝜽) = 𝒇𝑵
𝒏 (𝒚|𝜽, (

𝟏

𝒄
𝑰𝒏 +

𝟏

𝒅𝒏
𝒆𝒏𝒆𝒏

′ )
−𝟏

)   

– conditional distribution with equally correlated observations (instead of independent ones!!!) 

�̃�(𝒚|𝜽) = 𝒄 (𝑰𝒏 −
𝒄

𝒏(𝒄+𝒅)
𝒆𝒏𝒆𝒏

′ )        𝑪𝒐𝒓�̃�(𝒚𝒊, 𝒚𝒋|𝜽) =
𝒄

(𝒏−𝟏)𝒄+𝒏𝒅
     (𝒊 ≠ 𝒋),  

true �̃�(𝒚|𝜽) is qualitatively different from declared 𝒑(𝒚|𝜽); problem disappears when 𝒏 → ∞ 
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Concluding remarks 

 From the purely Bayesian perspective, using Bayes formula with “prior” dependent on 

actual data is completely incoherent. 

 Is this, however, of any interest to a non-Bayesian statistician? Perhaps such incoherent 

quasi-Bayesian approach generates inference tools that are better in terms of sampling-

theory properties... 

 Remind that, under certain regularity conditions, Bayesian decision functions (estimators) 

are admissible (cannot be improved – in terms of risk – uniformly in the parameter space) 

and form complete classes of such decision functions. 

 Here it has been shown that incoherent, quasi-Bayesian approaches can be interpreted as 

Bayesian for other sampling models, not for the declared (assumed) ones.  

 When a quasi-Bayesian procedure is not Bayesian for the declared sampling model, it may 

produce inadmissible decision functions (within this sampling model). 

 Being coherent (i.e., being Bayesian and obeying rules of probability) prevents from such 

risks – and it does so for (almost) free... 

 

 

THANK YOU FOR YOUR ATTENTION! 


